

BUL D R=ES M O.BNE/B :

 ETECTORisplay Morsé code and radioteletype ignals on your computer

UILD A SOLID STATE WIPER CON̦TTRO!

 eat those April showers!UILD A CAPACITANCE ADAPTER
Teasure capacitance on your DVM
NE-CHIP FREQUENCY ONVERTER
esighing with the ersatile NE602

IRCUIT COOKBOOK udio power amp IC's for utomotive applications

Secure your hard-disk data
rom unauthorized snooping

$\$ 2.50$ U.S. $\$ 2.95$ CAN

FடபKE

1

John Fluke Mig. Co. Inc.,. P.O. Box 9090 MS 250C, Everett, WA 98206 Copyright 1990 John Fluke Mic. Co. Inc. Al riahts reserved. Act No $1191-$ Fhn

The new 80 Series is a digital meter, an analog meter, a frequency counter, a recorder, a capacitance tester, and a lot more.

It's the first multimeter that can truly be called "multi" ... not only standard features, but special functions usually limited to dedicated instruments.

Plus, innovations only Fluke can bring you. Like duty cycle measurements. Or recording the minimum, maximum and average value of a signal. Or the audible MIN MAX Alert ${ }^{\text {tu }}$ that beeps for new highs or lows.
There's even Fluke's exclusive Input Alert ${ }^{\text {tu }}$, that warns you of incorrect input connections. And a unique Flex-Stand ${ }^{\text {u }}$ and protective holster, so you can use the 80 Series almost anywhere.
Make sure your next multimeter is truly multi. Call today at 1-800-44-FLUKE, ext 33.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.

Volts, ohms. amps, diode test, audible continuity, frequency and duty cycle, Volts, ohms, amps, diode test, audible continuity, frequency and duty cy
capacitance. Touch Holds capacitance, Touch Holds
$\underline{\$ 199^{*}}$. Relative, protective holster with Flex Stand ${ }^{\circ}$ ".
$\$ 239^{*}$
$\$ 289^{\circ}$

April 1990

Badio-
 Electronics.

BUITM THis

33 MORSE/RTTY DETECTOR

Translate those dits and dahs into plain English.
Larry Ashworth, KA7AFR

43 CAPACITANCE ADAPTER
 Measure capacitance with your DMM and this handy add-on.

Douglas A. Kohl
46 SOLID-STATE WIPER CONTROL
Our windshield-wiper delay control increases your driving safety.
Robert A. Heil

THOHINTIGY

ComputerDigest

39 GLITCHES IN THE POWER LINE

What causes them and how to monitor them with the latest equipment.
Vince T. Migliore

FOTMPHMES

69 SECURE YOUR HARD DISK WITH PC ACCESS
Hard-disk security for PC's.
Paul Renton

GIMCUHS

49 ONE-CHIP FREQUENCY CONVERTER
Simplify your RF designs with the Signetics NE602 IC.
Michael A. Covington
53 AUDIO AMP IC'S
Put audio-power amplifier IC's to use in your car.
Ray Marston

Displitulatis

6 VIDEO NEWS

What's new in this fastchanging field. David Lachenbruch

18 EQUIPMENT REPORTS
Fluke 85 Digital Multimeter and Portasol Butane-GasPowered Soldering Tool Kit.

59 HARDWARE HACKER
Alternate energy resources
Don Lancaster

64 AUDIO UPDATE

Is sound quality a matter of taste?
Larry Klein
66 DRAWING BOARD
Let's plunge deeper into video. Robert Grossblatt

69 EDITOR'S WORKBENCH
The future of computers.
Jeff Holtzman

PAGE 69

PAGE 39

92 Advertising and Sales Offices

92 Advertising Index
12 Ask R-E
93 Free Information Card
16 Letters
77 Market Center
22 New Products
58 PC Service
4 What's News

OU THIE COVP:

If your're not a radio amateur, Morse code is probably Greek to you. If you find it frustrating to be shut out of the Morse code communications coming across your shortwave radio, our PMX-200 CW/RTTY detector can open the door. Simply hookitup to your computer to display all the morse (CW) and radioteletype (RTTY) transmissions that you've been missing. For the lowdown on the high-performance, easy-to-tune Morse code detector, turn to page 33.

COMING NTHT MOLHH

THE MAY ISSUE GOES ON SALE APRIL 3

BUILD A "UNIVERSAL" PICTURE STABILIZER

And learn all about video synchronization in the process.

CROSSTALK-CANCELING SPEAKER SYSTEM

Use conventional stereo speakers to simulate binaural listening.

WHY ARE THERE SO MANY TRANSISTORS?

How to pick the right one for a given application.

SECURITY CIRCUIT COOKBOOK

Basic principles and practical circuitry of today's home-security systems.

WAVEFORM PROCESSING USING A PC

Math and computers combine to help you examine electronic wave theory, physics, stock-market cycles, and more.

As a service to readers, RADIO-ELECTRONICS publishes available plans or information relating to newsworthy products, techniques and scientific and technological developments. Because of possible variances in the quality and condition of materials and workmanship used by readers, RADIO-ELECTRONICS disclaims any responsibility for the safe and proper functioning of reader-built projects based upon or from plans or information published in this magazine.
Since some of the equipment and circuitry described in RADIO-ELECTRONICS may relate to or be covered by U.S. patents RADIO-ELECTRONICS disclaims any liability for the infringement of such patents by the making, using, or selling of any such equipment or circuitry, and suggests that anyone interested in such projects consult a patent attorney.

RADIO-ELECTRONICS, (ISSN 0033-7862) March 1990. Published monthly by Gernsback Publications, Inc., $500-\mathrm{B} \mathrm{Bi-County}$ Boulevard, Farmingdale, NY 11735 Second-Class Postage paid at Farmingdale, NY and additional mailing offices. Second-Class mail registration No. 9242 authorized at Toronto, Canada. One-year subscription rate U.S.A. and possessions $\$ 17.97$, Canada $\$ 23.97$, all other countries $\$ 26.97$. All subscription orders payable in U.S.A. funds only, via international postal money order or check drawn on a U.S.A. bank. Single copies $\$ 2.50$. © 1990 by Gernsback Publications, Inc. All rights reserved. Printed in U.S.A.

POSTMASTER: Please send address changes to RADIO-ELECTRONICS, Subscription Dept., Box 55115, Boulder, CO 80321-5115.

A stamped self-addressed envelope must accompany all submitted manuscripts and/or artwork or photographs if their return is desired should they be rejected. We disclaim any responsibility for the loss or damage of manuscripts and/or artwork or photographs while in our possession or otherwise.

DELUXE TEST LEAD KIT
Users call TPI test leads The Absolute Best. The TLS2000 features the highest quality cable in the industry - with spring-loaded safety-sleeved plugs. U.L. listed (file E79581). Kit: \$29. Leads \& probes only: \$19. Satisfaction guaranteed. TEST PROBES INC. Call toll-free for catalog: 1-800-368-5719.
CIRCLE 251 ON FREE INFORMATION CARD

BNC ATTENUATOR KIT

Contains 4 attenuators $-3 \mathrm{~dB}, 6 \mathrm{~dB}, 10 \mathrm{~dB}$, $20 \mathrm{~dB} ; 1$ feedthrough and 1 termination. Thickfilm circuitry for low reactances. Rugged design resists shock and lasts longer. Rectangular shape stays put on the bench. Impedance: 50Ω Frequency: 1 GHz . Maximum Power: 1 kW peak, 1 W avg. VSWR 1.2:1. Attenuator Accuracy $: \pm 0.2 \mathrm{~dB}$. Terminations Resistance Tolerance: $\pm 1 \%$. $\$ 150$.
TEST PROBES INC. Call toll-free for catalog: 1-800-368-5719.
CIRCLE 252 ON FREE INFORMATION CARD

ECONOMICAL SILICON RUBBER TEST LEADS

Best value in moderately priced leads. High quality, soft, silicon rubber cable. Banana plug on measuring tip accepts push-on accessories. Plugs have spring-loaded safety sleeves. Model TL1000 \$14. Satisfaction guaranteed. TEST PROBES INC. Call toll-free for catalog: 1-800-368-5719.

COAX ADAPTER KIT

- Create any adapter in seconds
- Make all combinations of BNC, TNC, SMA, N, UHF, Mini-UHF, F and RCA
The TPI 3000A kit contains male and female connectors of all 8 types, and 6 universal interfaces. Simply screw any combination of 24 connectors to one of the interfaces to create the desired adapter. \$150.
TEST PROBES INC. 9178 Brown Deer, San Diego, California 92121. Call toll-free for catalog: 1-800-368-5719.

What's News

Laser radar provides four images per second

A laser radar that shows not only the distance to a sighted object, but also an image of it-and updates that image four times a sec-ond-has been developed and tested at Sandia National Laboratories (Albuquerque, NM). The new laser combines some of the advantages of conventional radar with those of video imaging, and has capabilities about midway between the two. Its frame rate is fast enough for possible short-range military applications.

The Sandia range-imaging laser uses a small gallium-arsenide semiconductor laser diode that emits continuous near-infrared light that is just beyond the range of the human eye. The signal is amplitude modulated at 4 MHz . The phase of the return signal is mea-

LASER-RADAR RANGE IMAGE OF A POSSIBLE INTRUDER. Different ranges are represented by varying shades of gray or in pseudocolor. A bush, at longer range, can be seen at right. The sky is shown with random shades because it gives no radar return.
sured to obtain the range of the viewed object, and its image is displayed on the video screen as a 64 \times 64-pixel pseudocolor map. The present maximum range is about 50 meters.

Future plans include efforts to integrate the electronics, replace the present low-power laser with a higher-powered one, and extend the range to the hundreds of meters necessary for a military version of the system.

Controlled reproduction of superconducting materials.

Researchers at Bellcore (Middletown Township, NJ) have fabricated multi-layered superconducting materials that can be reproduced in a controllable manner, possibly overcoming a critical obstacle to developing high-temperature superconducting devices for commercial use. Bellcore's experimental thin films, when cooled to near liquid-nitrogen
temperatures, display the Josephson effects that are necessary for viable superconductive electronics. A Josephson junction is an electrical connection that allows the flow of low-voltage "super currents" between superconductors. Because the connection is weak, the super current can be easily controlled.

Josephson junctions are present in low-temperature superconducting materials, but in high-
temperature superconductors they appear only at the natural boundaries between crystal grains or in specially designed structures that are not suitable for device applications. Bellcore's process for fabricating high-temperature superconductor research prototypes offers a means to engineer and control the Josephson properties so that they recur in a highly predictable fashion.

The high-temperature prototype films are composed of three distinct but similar layers, each made of a ceramic material that consists of copper, barium, and oxygen, along with a fourth substance: Yttrium is used in the superconducting first and third layers, while a mix of yttrium and praseodimium results in a non-superconducting middle layer that serves as the critical "weak" electrical link between the others. By substituting some of the yttrium in the layers with praseodimium, the electrical properties of the layers can be significantly varied and controlled. The effect of layering of superconducting and non-superconducting materials was achieved using a process known as pulsed excimer laser deposition.

Because modified semiconduc-tor-processing techniques were employed to make the thin-film prototypes, Bellcore predicts that this approach could be adapted for manufacturing in large quantities with no significant loss in quality. Although this is only the first step toward commercial feasibility, possible applications for the high-temperature superconductors are being considered-including using these materials as extremely sensitive magnetic field detectors for telecommunications systems, and also as integral components in microwave systems. Potential long-range applications include high-speed telecommunications systems and computer logic gates.

AT 5299.9 NO OTHER DESIGN WORKSTATION GIVES YOU SO MUCH FOR SO LITTLE.

Large Breadboarding area

holds 24 ICS

Here's PB-503, the total design workstation. It has everything! Instrumentation, including a function generator with continuously variable sine/square/triangle wave forms-plus TTL pulses. Breadboards with 8 logic probe circuits.

Call toll-free for details 1-800-572-1028

And a Triple Power Supply with fixed 5VDC, plus two variable outputs (+5 to 15 VDC and -5 to 15VDC). Throw-in 8 TTL compatible LED indicators, switches, pulsers,

potentiometers, audio experimentation speaker... plus a lifetime guarantee on all breadboarding sockets! You have everything you need right there in front of you! PB-503-one super test station for under $\$ 300$! Order yours today!!

VIDEO

 News

DAVID L.ACHENBRUCH, CONTRIBUTING EDITOR

- Big screens. The search for a giant, thin replacement for the cathode-ray tube-almost as old as the cathode-ray tube itself-is intensifying. For the first time, color TV sets are being made without picture tubes-the tiny "personal" sets use liquid-crystal displays, or LCD's. That has encouraged manufacturers to search for ways to build giant LCD's. Although LCD color-TV displays as large as 14 inches have been built and demonstrated, their cost would be astronomical using present technology.

Japanese manufacturers, joined by their government, have mounted a crash program to develop giant color LCD's measuring 40 inches or more diagonally. In the United States, several companies have undertaken major projects also intended to lead to giant, thin, wall-mountable color-LCD TV displays. An official of David Sarnoff Research Center in Princeton, NJ (formerly RCA Laboratories) described such a project to a recent conference on flat information displays in Santa Clara, CA. The goal is a wall-hanging HDTV screen measuring 75 inches diagonally and not more than four inches thick, with more than 200 foot-lamberts brightness, and a contrast ratio better than 50-to-1-at a cost of less than $\$ 500$. Sarnoff Labs expects to reach this goal in 10 years-but it expects Japan to be there in seven.

- Another new display. A completely new type of display for high-resolution television has been proposed by Foresight, Inc., a subsidiary of Summa Medical Corporation of Phoenix, AZ. Although details of the product are still obscure because the company's patent applications haven't been granted yet, Japan's giant trading company Mitsui is planning to form a group of Japanese licensees to manufacture the system.

The heart of the Foresight system is a effectively like an optical semiconductor in that its reaction to light can be modified electronically at very high speeds and with great resolution," according to the developer. The material, which is used to coat the face of a direct-view or projection-TV tube, is altered by an electrical signal. One of its properties is the ability to
retain its altered state until a new signal changes it. Thus only the changes in a picture need be sent to the tube. Foresight said the result can be an extremely high-definition signal using a standard NTSC signal and computerized line interpolation. The addition of microprocessor picture enhancement could result in a picture with a resolution of more than $4,000,000$ pixels.

- 10-Foot rear projection. The largest rearprojection TV set was demonstrated by Mitsubishi at the Consumer Electronics Show in Las Vegas in a rather large living-room setting. It has a 120 -inch diagonal picture and is designed for "home theaters" built into large homes. As displayed in subdued light, the entire wall became an almost theater-sized screen. The cost of this latest step in home-theater television is about $\$ 20,000$, not counting installation.
- TV-VCR combos. VCR's with built-in TV's and TV's with built-in VCR's are the latest trend, on the basis of exhibits at the Consumer Electronics Show. Ever since the introduction of the VCR there have been combinations (the first Betamax was built into a television set), but that approach has more adherents than ever today from tiny 3 -inch LCD personal-video combinations with VCR's to giant-screen televisions with slots for videocassettes.

One of the major exponents of that approach is Panasonic, which introduced six new combinations at the show, each one designed for a different purpose. The smallest is a personalvideo combination of VHS recorder and 4 -inch LCD monitor. Next is a portable VHS with a 7 inch color TV set, operable on AC or DC. A 20inch combination is designed to play back videocassettes recorded in European PAL and SECAM color systems as well as NTSC. It can record in NTSC only, however. A second 20 -inch combo has two tuners, so it can record one program while displaying another. Panasonic also introduced two 27 -inch combinations, one that plays standard VHS cassettes and the other with a built-in Super-VHS recorder and a highresolution TV set.

Radio Shaek Parts Place",

START SPRING PROJECTS TODAY AT RADIO SHACK

 Special-Order "Hotline"Computer/Peripheral Connectors

(1)

(2)

(3)

Solder-Type D-Subs. Metal shield plus gold-plated pins and terminals for highest reliability.

Fig.	Description	Cat. No.	Only
1	D-Sub 9 Male	$276-1537$.99
2	D-Sub 9 Female	$276-1538$	1.99
3	Shielded Hood	$276-1513$	1.49

(4)

(5)

(6)
(7)

Solderless IDC-Type Connectors

Fig.	Description	Cat. No.	Each
4	D-Sub 25 Male	$276-1559$	3.99
.	D-Sub 25 Female	$276-1565$	3.99
5	36-Pos. Male Printer	$276-1533$	4.99
6	34-Pos. Card-Edge	$276-1564$	1.99
7	34-Pos. Header	$276-1525$	2.49

Super Adhesive Works When Others Fail Forms a secure bond to most tlas- tics, metals, ce- ramics and wood Twin-plunger dis- penser eliminates measuring and waste. \#64-2305

Shielded Cables

(1)	(2)	Our	
		Best!	
(1) Oxygen-Free Copper A/V Cable. 6 feet, 6 mm dia. \#278-1271 . . . 5.95 8 mm Diameter. \#278-1272 7.59			
(2) Dual Mike Cable. For balanced hookups. 30 ft . \#278-1281 19.95			
(3) Super-Flex Mike Cable. Extrasupple. 30 ft . \#278-1282 14.95			

Top-quality, shielded male-tofemale RS-232 adapter. Wire included jumpers and board to suit your need. \#276-1403 ... 9.95

(1) "Ding-Dong." \#273-071 . . 8.99 (2) Two-Tone. \#273-070 9.95 (3) Miniature Electronic Buzzers.

DC Voltage	Cat. No.	Each
$11 / 2$ to 3	$2733-053$	2.19
6	$273-054$	2.19
12	$273-055$	2.19

Tantalum Caps

 Low $5{ }^{4}$(2)
High capacity in a tiny package.
(2) Precision Thermistor. Resistance changes in proportion to temperature. -50 to $+110^{\circ} \mathrm{C}$.
\#271-110 1.99
(2) 15-Turn Trimmer Pots. $3 / 4$ watt. 1 k , \#271-342. 10k, \#271-343. 20k \#271-340................Each 1.49

Resistor Buys

$\mu \mathrm{F}$	WVDC	Cat. No.	Each
0.1	35	$272-1432$.59
0.47	35	$272-1433$.59
1.0	35	$272-1434$.59
2.2	35	$272-1435$.69
10.0	16	$272-1436$.79
12.0	16	$272-1437$	1.19

Super Bright! Long Life!
Perfect for photo replacement or hobby projects and experiments. Trigger: 4 kV . Anode: 200 V min . With circuit data.
\#272-1145
3.29

(1) Color-TV Tuner/Control Cleaner. \#64-2320 3.19
(2) Precision Lubricator. Needle-tip applicator reduces spills and waste. \#64-2301, 1.69

Etch Your Own Boards

Everything You Need
For Two PC Boards
9^{95}
Extra Etchant and Pens Available

Archer ${ }^{5}$ PC Board Kit includes two $41 / 2 \times 3^{\prime \prime}$ copper-clad boards, resist-ink pen, solvent, etchant, layout strips/circles, tank, special $1 / 16^{\prime \prime}$. drill bit and instructions. \#276-1576

Autoranging Probe DVM

Measures to 400 volts AC/DC and resistance. It's really handy for tight spaces. Data hold freezes display and lets you remove tester for easy reading. Has continuity sounder, lowbattery indicator. Overload protected. Ready to use with batteries, manual, case. \#22-165

"Pro" Soldering Station

Solder Better, Faster!
Selectable $15 / 25$-watt power, grounded tip to protect sensitive components. Tip-cleaner pad. Ironclad replacement and surfacemount tips available. mount tips available.
UL listed AC. $\# 64-2057$

Over 1000 items in stock! Binding Posts, Books, Breadboards, Buzzers, Capacitors, Chokes, Clips, Coax, Connectors, Fuses, Hardware, ICs, Jacks, Knobs, Lamps, Multitesters, PC Boards, Plugs, Rectifiers, Resistors, Switches, Tools, Transformers, Transistors, Wire, Zeners, More!

No other training anywhere-shows you service computers

Only NRI walks you through the step-by-step assembly of a powerful AT-compatible computer system you keep-giving you the hands-on experience you need to work with, troubleshoot, and service all of today's ul most widely used computer systems. With NRI at-home training, you get everything you need to start a money-making career, even a computer service business of your own.

No doubt about it. The best way to learn to service computers is to actually build a state-of-the-art computer from the keyboard on up. As you put the machine together, performing key tests and demonstrations at each stage of assembly, you see for yourself how each part of it works, what can go wrong, and how you can fix it.

Only NRI, the leader in careerbuilding electronics training for more than 75 years, gives you such practical, real-world computer servicing experience. Indeed, no other training -in school, on the job, anywhere-shows you how to troubleshoot and service computers like NRI.

You get in-demand computer skills as you train with your own AT-compatible computer system -now with 20 meg hard drive and 1 meg RAM

With NRI's exclusive hands-on training, you actually build and keep the powerful new ATcompatible West Coast 1010 ES computer, complete with 1 meg RAM and 20 meg hard disk drive.

You start by assembling and testing the "intelligent" keyboard, move on to test the circuitry on the main logic board, install the power supply and $5-1 / 4$ " floppy disk drive,
then interface your highresolution monitor. But that's not all.

Only NRI gives you a top-rated micro with complete training built into the assembly process

Your NRI hands-on training continues as you install the powerful 20 megabyte hard disk drive-today's mostwanted computer peripheral-included in your course to dramatically increase your computer's data storage capacity while giving you lightning-quick data access.

Having fully assembled your West Coast 1010 ES, you take it through a complete series of diagnostic tests, mastering professional computer servicing techniques as you take command of the full power of your computer's highspeed 80286 microprocessor.

In no time at all, you have the confidence and the know-how to work with, troubleshoot, and service every computer on the market today. Indeed, you have what it takes to step into a full-time,
money-making career as an industry technician, even start a computer service business of your own.

Voice synthesis training adds an exciting new dimension to your computer skills
Now NRI even includes innovative hands-on training in voice synthesis, one of today's most exciting and widely applied new developments in computer technology.

You now train with and keep a full-featured 8 -bit D/A converter that attaches in-line with your computer's parallel printer port.

in school, on the job, how to troubleshoot and like NRI

one more way NRI gives you the confidencebuilding experience you need to feel at home with the latest advances in computer technology.

No experience needed, NRI builds it in

You need no previous experience in computers or electronics to succeed with NRI. You start with the basics, following easy-to-read instructions and diagrams, moving step by step from the fundamentals of electronics to sophisticated computer servicing techniques.

With NRI's unique Discovery Learning Method, you're sure to get the kind of practical hands-on experience that will make you fully prepared to take
advantage of every opportunity in today's top-growth field of computer service.

With NRI, you learn at your own pace in your own home. No classroom pressures, no night school, no need to quit your present job until you're ready to make your move. And all throughout your training, you have the full support of your personal NRI instructor and the NRI technical staff.

Your FREE NRI catalog tells more

Send today for your free full-color catalog describing every aspect of NRI's innovative computer training, as well as hands-on training in robotics, video/audio servicing, telecommunications, electronic music technology, and other growing high-tech career fields.

If the coupon is missing, write to NRI School of Electronics, McGraw-Hill Continuing Education Center, 4401 Connecticut Avenue, NW, Washington, DC 20008.
AT is a registered trademark of International Business Machines Corporation

Using your D/A converter along with the exclusive text-to-speech software also included, you explore the fascinating technology behind both digitized and synthesized computer speech.

You discover how you can use your computer to access and play back a variety of prerecorded sounds . . you see how to add speech and sound effects to programs written in BASIC, C, Pascal, and others . . you even learn how to produce high-quality speech directly from your own original printed text.

NRI's exclusive new hands-on training in voice synthesis is just

Ask R-E

WRITE TO:

ASK R-E

Radio-Electronics
500-B Bi-County Blvd.
Farmingdale, NY 11735

INFO ON LEADING-EDGE PC COMPATIBLE

I have a PC-compatible computer, a Leading Edge model \#MP-1676L. I bought it used and, unfortunately, didn't get any manuals with it. It has a hard disk and a memory expansion card that has 384 K in 64 K RAM chips. The problem is that the switches on the motherboard and the ones on the memory-expansion card got scrambled, and I don't have any idea how to set them. I've written to Leading Edge but haven't gotten any answer from them.-W.D., Brooklyn, NY.

I'm surprised you didn't get any response from Leading Edge since I've never had any trouble with them. Maybe your letter got lost. You can write again but calling would be faster, at (800) 343-6833. You might have trouble getting information since you bought your computer used, and Leading Edge hasn't made them in over six years. Also, Leading Edge made them on an OEM basis for Mitsubishi, and never really sold them under their own name. The " $M P$ " in the serial number stands for "Mitsubishi Product."

If you can't get any help from Leading Edge, try Mitsubishi at (800) 227-3378. Whoever you speak to, try to get an owner's manual. If you don't have any luck, there are two authorized NY area service centers that can help you, Computer Repair Center at (212) 696-1296, and Autotech Computer Systems at (212) 247-2099. Good luck.

POWER SUPPLY IMPROVEMENTS

I have had a 12 -volt DC benchtype power supply for several
years. I've never had any trouble with it, but since I'm starting to experiment with digital electronics, I need a 5 -volt supply also. I hate to buy another supply because this one works well, and I don't have much bench space. Is there any way to get 5 volts from my present supply? Or, better still, can I make it into a variable sup-ply?-D.P., Los Angeles, CA.

There's good news and bad news. The bad news is that there's no easy way to convert your current supply. You didn't mention this in your letter, but I'll bet the case uses pop rivets or some other method that's difficult to open. And, since you didn't send the schematic, I'm assuming you've never opened it. The good news is that you can build a separate circuit to give you both fixed and variable outputs, and power it with your 12volt supply.

Since you already have a regulated DC source, you only have to add the circuit shown in Fig. 1 to generate two separate outputs. It's very simple and, if you build it carefully, should be just as reliable as your present supply. Use a plastic case to avoid shorts, and heatsink both reg-

FIG. 1

ulators, since you can't tell how much current you'll need, or for how long. In general, bench supplies have to work harder than those built for specific circuits. Both regulators are readily available, and have all the neat features you need, like stable outputs and thermal shutdown.

HARD DISK WOES

I recently bought an ST- 238 hard disk for my computer but can't make it work; the controller card is a Western Digital 27X. My computer is a $10-\mathrm{MHz}$ AT clone and works perfectly. I've followed all the steps in the computer manual, but I keep on getting an error every time I try to access the hard disk. Any ideas?-M.M., Chicago, IL.

Several ideas and one really good suspicion. Your letter was rather skimpy on details as to what you've tried, but since you have an AT and a manual (lucky you), I think I know what your problem is.

Although an ST-238 can be used with any IBM clone, the controller you have is an 8-bit device intended for an XT-class machine. If you've followed all the instructions in the manual, you've undoubtedly been told to run the AT setup program, and tell the machine that you have a hard disk as drive one. That is normal procedure for a 16-bit AT controller card. Since you're using an 8 -bit controller, you have to tell the computer during setup that you're not using a hard disk. That may seem strange, but if you didn't do it, it's the most likely cause of your problem.

The reason has to do with deciding who controls the hard

 when you join the ELECTRONICS ENGINEERS \& DESIGNERS BOOK CLUB ${ }^{\text {sw }}$ values tos168.40

1938P $\$ 29.95$

$9821 \quad \$ 38.95$

3098 Counts as 2

$3205 \quad \$ 24.95$

$3037 \quad \$ 24.95$

$9788 \quad \$ 49.50$

2962P $\$ 17.95$

$9773 \quad \$ 44.95$

$9825 \quad \$ 49.95$

9244P $\$ 18.95$

$2985 \quad \$ 24.95$

9243P \$12.95

$2672 \quad \$ 49.50$

8225P $\$ 19.95$

$3212 \quad \$ 34.95$
Counts as 2

How the Club Works

YOUR BENEFITS: You get 3 books for $\$ 4.95$ plus shipping and handling when you join. You keep on saving with discounts up to 50% off as a member.
YOUR PROFESSIONAL BOOKSTORE BY MAIL: Every $3-4$ weeks, you will receive the EE\&D Book Club News describing the Main Selection and Alternates, as well as bonus offers and special sales, with scores of titles to choose from.
AUTOMATIC ORDER: If you want the Main Selection, do nothing and it will be sent to you automatically. If you prefer another selection, or no selection at all, simply indicate your choice on the reply form provided. As a member, you agree to purchase at least 3 books within the next 2 years and may resign at any time thereafter.
BONUS BOOKS: Starting immediately, you will be eligible for our Bonus Book Plan, with savings of up to 80% off publishers' prices.
IRONCLAD NO-RISK GUARANTEE: If not satisfied with your books, return them within 10 days without obligation!
EXCEPTIONAL QUALIIY: All books are quality publishers' editions especially selected by our Editorial Board.
(Publishers' Prices Shown)

Your source for quality, affordable and timely authoritative engineering books.

disk, the computer or the controller. Without getting into nit-ty-gritty detail, there are two basic steps your computer has to do to talk to the hard disk. It has to know the disk's logical structure (the number of heads and tracks), and second, and how to control the mechanics to move the heads to a specific track and read a sector.

In an XT-class machine, all the hard-disk operations are left to the controller. You tell it what you want, and it translates your request to tracks (cylinders, to be precise), gives the disk the necessary commands to move the heads, and either writes data to the disk or gets the data you're asking for.

By contrast, AT-class machines have the hard-disk translation tables in ROM, and rely on the controller only to operate the drive mechanics-not to do any translations. If you used the setup program and told the computer it had a hard disk connected to it, you'll get an error because the controller is sit-
ting between the ROM-based translation tables and the hard disk itself.

Rerun the setup program, and tell the machine you don't have a hard disk attached. Then, format the drive using the controller firmware, just like you would if you were working on an XT. Run DEBUG, and once you're at the dash prompt, type $\mathrm{G}=\mathrm{C} 800: 5$ (no spaces). Follow the screen instructions and, until you get more familiar with the questions, accept all defaults.

The firmware will do a lowlevel drive formatting, and then you'll have to reboot. Next, run FDISK, and keep pressing RETURN to accept the defaults; that will put a DOS partition on the disk. Both FDISK and DEBUG are on the DOS distribution disks. You can then use the FORMAT program to prepare the hard disk (think of it as a big floppy). If you're not sure about any of this and worried about doing it wrong, get help from someone local who is more familiar with IBM clones.

THIS YEAR, THE IRS WOULD LIKE TO GIVE YOU SOMETHING FOR A CHANGE.

Free help. If you're having a problem doing your taxes, you don't have to do them alone. There are IRS-trained volunteers to help you. So the only number you need to know is on the coupon above. Cut it out and cut down on your tax worries. Call us and we'll direct you to the volunteer site nearest you. The IRS-trained volunteers. They'll make your taxes less taxing.

MAKE YOUR TAXES LESS TAXING.

Discover Your Career Potential In High-Tech Electronics...Call 1-800-776-2900!

CIE Gives You The Training You Need to Succeed... At Your Own Pace...\& In Your Own Home!

Itf you're anxious to get ahead ... and build a real career...you owe it to yourself to find out about the Cleveland Institute of Electronics!

CIE can help you discover your career potential in the fast growing field of high-tech electronics. A career that will challenge and excite you every day...reward you with a powerful feeling of personal accomplishment.. and deliver a level of financial security you may have only dreamed of before!

As the leading school in home-study electronics, CIE has helped over 150,000 students in the U.S.A. and over 70 foreign countries get started in this exciting field. To find out how CIE could be helping you...read on...then send for a CIE catalog TODAY!

A Growing Need For
 Trained Professionals!

The career opportunities shown here are only a few of the challenging, highpaying careers you could enjoy as an electronics technician.

You could be the "brains" behind the scenes of an exciting TV broadcast. trouble-shoot life-saving medical equipment...design exotic new aeronautics systems...CIE's job-oriented programs offer you the quickest possible path to the career of your dreams! And CIE also features military and union re-training, to build on what you already know.

Dozens Of Fascinating Careers To Choose From!

Even if you aren't sure which career is best for you, CIE can get you started with core lessons applicable to all areas of electronics. As you advance, CIE makes job opportunities available

Personal Training From A Renowned Faculty.

Unlike the impersonal approach of large classroom study, CIE offers you one-on-one instructional help 6 days a week, toll-free. Each CIE lesson is authored by an independent specialist, backed by CIE instructors who work directly with you to answer your questions and provide technical assistance when you need it.

Practical Training... At Your Own Pace.

Through CIE, you can train for your new career while you keep your present job. Each course allows a generous completion time, and there are no limitations on how fast you can study. Should you already have some electronics experience, CIE offers several courses which start at the intermediate level.

"State-Of-The-Art" Facilities \& Equipment.

In 1969, CIE pioneered the first electronics laboratory course, and in 1984, the first Microprocessor Laboratory. Today, no other home study school can match CIE's state-of-the-art equipment. And all your laboratory equipment is included in your tuition cost. There is no extra charge-it's yours to use while you study at home and on the job after you complete your course!

Earn Your Degree To Become A Professional In Electronics!

Every CIE course you take earns you credit towards the completion of your Associate in Applied Science Degree, so you can work towards your degree in stages. And CIE is the only school that awards you for fast study, which can save you thousands of dollars in obtaining the same electronics education found in four-year Bachelor's Degree programs! Call or write for details today!

Call TOLL-FREE 1-800-776-2900!

CIE World Headquarters

Cleveland Institute of Electronics, Inc.
1776 East 17th St., Cleveland, Ohio 44114
ARE-165
\square YES! Please send me your independent study catalog (For your convenience, CIE will have a representative contact you-there is no obligation.)

Pint Name
Address Apt \#

City/State/Zip
Age \square Area Code/Phone No.

Check box for G.I. Bill bulletin on educational benefits: \square Veteran \square Active Duty
Mail This Coupon Today!

Letters

SUPER SURROUND SOUND

I must tell you that I've been a subscriber for quite a few years and I will never stop the subscription. I wanted to let you know that I've build the surround-sound decoder from the April 1988 issue of Radio-Electronics, and the subwoofer simulator from the May 1988 issue. I also built the width circuit and the center-channel section of the acoustic field generator from the January 1990 issue.

I am so impressed with those designs that I can't stop bragging about my system. It sounds exactly like a theater-or maybe even better. Now I automatically look for a rental tape with the Dolby logo on it, particularly Dolby-Surround. We get popcorn, turn off the lights, and the whole family flips out. It's fantastic!

Thanks for sharing your expertise. You're doing a beautiful job! RICH CIAFARDINI Queensbury, NY

NOT-SO-COLD FUSION

Don Lancaster's columns on cold fusion (Radio-Electronics, August and September 1989) were most welcome-l've been somewhat out of touch and I'm still trying to come up to date on the subject.

In the early 1950's I met a Dr. Johnson from MIT who claimed to have melted the cathode in a Crookes-tube-type apparatus with very low input energy. He attributed that to fusion of the hyplatinum or palladium cathode can't remember precisely which materials he used).

Although I've never been in a position to test Dr. Johnson's claims, it occurs to me that many a hacker might be, and that the idea
should be spread. It would be far better for that principle to be made available in the public domain than to be patented, because the world so urgently needs a good power source.
The prevalent idea now seems to be that Pons made some mistake in his heat measurements, but how about the reported meltings and explosions? Such phenomena would be hard to think of as mere imaginings, and if there is anything a good chemist knows, it is how to make measurements of such phenomena as heat generation.

If there is any question as to why cathodes should explode, I would like to advance the thought that helium formed within the metal would almost surely be slow to escape as compared to the rate at which hydrogen could be absorbed. The resultant pressure could be immense.

For a possible future power application, I would suggest a tube of suitable metal (PD or PT) with a wire anode with ends made of insulating material drawn through its axis. D_{2} or H_{2}, the gases, would be present at low pressure, characteristic of Crooke's tubes. The tubular cathode could be expected to become very hot, and should be immersed in water, forming a structure similar to a fire-tube boiler. Of course, the entire apparatus should be placed in an underground, or otherwise shielded vault, for protection against possible radiation or explosion.

In the ultimate development the fusion might not be so cold after all. Perhaps the cathode must be allowed to melt, and to form a pool from which the helium could escape readily, eliminating the explosion hazard. A problem of
containment for the high-melting noble metals would then arise; that is the sort of problem any hacker would love.

I have tried to make my own little wet setup, using titanium for the cathode, but have had trouble finding a proper cheap anode. No common metal works, because of oxidation. Silicon should work better, but is not readily available to me.
THOMAS ROSS
Freeland, WA

CUSTOMER SATISFACTION

When I decided to build the 386SX PC from the articles that appeared in the June, July, and August 1989 issues of Radio-Electronics, the first thing I did was to contact Peripheral Techology for the parts. The people there are first rate: Whenever I had a question they were helpful and courteous in their responses. I had a few problems along the way (a defective power supply zapped the chips), and the people at Pe ripheral Technology replaced or repaired the parts and shipped the system back to me at no charge. It works just fine now, and I'm writing commend Peripheral's responsible and honest manner of doing business. I will continue to do business with them as I upgrade the system, and would recommend them to anyone involved with PC's.
CHARLES F. FLAHERTY
Waukegan, IL

TERRIFIC TRANSMITTER

I just wanted to comment on how impressed I was with the "TV Transmitter" article by Rudolf F. Graf and William Sheets that appeared in the June and July 1989 issues. I ordered the kit and re-
ceived it promptly. When I hit a few snags, I called the suppliers and received clear and accurate advise. After the kit was completed, I followed the tuning instructions, and Voila! it worked!

The transmitter's design is quite remarkable, using some pretty ordinary electronic components.

Hats off to the authors for providing a reliable, "do-able," mail-order kit, and to Radio-Electronics for making it available to folks like me.
LES MALZMAN
Portland, OR

ETCHANT TANK DESIGN

I am writing about a very small, but potentially disastrous, design oversight in the "Etchant Tank" described in the December 1989 issue of Radio-Electronics.

As a tropical-fish owner, I can assure you that if you locate the air pump below the level of the etchant or water in any tank you are inviting trouble. There is a very good chance that if the power fails, or one of the reed or flap valves fails, you will get a siphon
effect-causing a great big mess.
As for the letter from Michael Catudal, which appeared in the same issue, I suggest that he visit a hamfest to get an idea about the real hobbyist world. The 2716 EPROM is far from obsolete. I suppose he has an 80486-based computer that runs at breakneck speed. C'mon, Michael, join the real world!
PHIL CLINE
Indianapolis, IN

CORRECTION

In our "Universal Laboratory Power Supply" construction article (Radio-Electronics, March 1990) a couple of errors need correcting:

- In the schematic (Fig. 1), pin 7 of IC2 is shown connected to R14. It should be connected to the output of IC1. The bottom of R14 should instead be connected to pin 2 of IC2.
- The Parts Placement diagram (Fig. 3) shows the incorrect connection for meter M2. Follow the schematic for the proper way to hook up M2 and it's corresponding current switch, S2.
- The parts list and ordering information incorrectly identify Q1 and Q2, which are MJ15023 transistors.

A New AOR Scanner

100 Channels Low, Air, High, UHF \& 800MHz

$108-174 \mathrm{MHz}, 406-512 \mathrm{MHz}$ and $830-950 \mathrm{MHz}$.

- 5 Scan Banks and 5 Search Banks
- 25 Day Satisfaction Guarantee
- No Frequencies Cut Out.

10707 E. 106 th St. Indpls., IN 46256
Toll Free 800-445-7717 Visa and MasterCard
(COD slightly higher) nerend In Indiana 317-849-2570 Collect FAX (317) 849-8794

SIFP UP 10 E:K PTIECSETH:

20 MHz DUAL-TRACE OSCILLOSCOPE

$1 \mathrm{mV} /$ div sensitivity $\cdot 20 \mathrm{MHz}$ response at a true -3 dB - AUTO/NORM triggered sweep operation with AC, TVH, TVV and line coupling - Calibrated-18 step timebase with $\times 10$ magnifier $-X$ - Y operation - Built-in calibration source - Bright, sharp (RT with P31 phosphor - Tilt stand and soft handle. Includes Probes; 2-year warranty. Model 2120

20 MHz DUAL-TRACE DELAYED SWEEP SCOPE

$1 \mathrm{mV} /$ div sensitivity . Delayed sweep in 18 ranges - Buils-in component tester for capacitors, inductors, diodes, transistors, zener diodes. 20 MHz re sponse at a true - 3 dB - AUTO/NORM triggered sweep operation with AC, TVH, TVV and Line coupling. Calibrated-20 step timebase with $x 10$ magnifie - X-Y operation - Built-in calibration source - Bright, sharp (RT with P3I phosphor - Tilt stand; soft handle. Probes, 2-yr. warranty ind. Model 2125

60 MHz DUAL-TRACE DUAL TIME BASE SCOPE

 $1 \mathrm{mV} /$ div sensitivity - sweep to $5 \mathrm{~ns} /$ div -22 calibrated ranges - main time base. 19 calibrated ranges - delayed time hase. 12 kV accelerating voltage - Signal delay line - Beam finder • V mode - Component tester - Channel 1 output, Z axis input - X-Y operation - Single sweep. Probes included. 2 year warranty. Model 2160

For the Best Values 0 n All Your Test Equipment Needs Look to JOSEPH ELECTRONICS BONUS VALUE! EXTRA UNIVERSAL SWITCHABLE SCOPE PROBE S $19^{\circ 0}$
3-position - 1x, ref, 10 x . Risetime less than 1.5 usec. Excludes interference even on most sensitive ranges - Rugged; withstands heat, humidity. Universal for all scopes.

HAND-HELD 3½ DIGIT LCD 'TEST BENCH' MULTIMETER

41 volitage ranges - Meosures $A C \& D C Y$ with $0.5 \% . D C V$

 octuracy - DC \& AC currents $200 \mu A$ to 20 A - Resistance 0.1Ω $102000 \mathrm{M} \Omega$. Frequency 20 kHz 10200 kHz . Copacitonce up to 20uF - Logic Level (TTL) - Transistor gain . Diode iunction test - Drop-resistant cose - Tilh stand. Model 388-HDOUR BEST Reg $\$ 129$

20 MHz anolog bandwidth. 10MS/s sompling rote $\cdot 2 \mathrm{k}$ memory per channel. 20MHz equivalent lime sampling. yr. warranty included.

$1 \mathrm{mV} /$ div sensitivity - Sweeps 10 $2 \mathrm{~ns} /$ div - 23 calibroted ranges; 20 on delayed time base - Colibroted
delay fime multiplier . Signal deloy delay time multiplier - Signal deloy
line. 19 kV occelerating voltoge line. 9 orv occeierating volitage -
mode triggering. Chonnel 1 output mode triggering - Channel 1 outpu
Probes, 2 -yt. warranty includded. Probes, 2 -yr. worranty included.
Model 2190 Reg. $\$ 16{ }^{\text {Moded } 2190}$
$\$ 164500$

Low ripple - Regulated constant volt or current outputs - 2 current
ronges - Isoloted output ronges - solated output -
float ground either polarity Overlood, reverse polarity Overiood, reverse polarity protection - Parallel, series copobility. 1 -year warranty. Req.
52990
$\$ 2418^{000}$

Continuously variable voltoge \& current - Constant-valtoge \& con-stant-current modes - Voltoge \& 104 curtent rangelis $\cdot 2 A$ and wartonly.

Add $\$ 7.50$ Shiping ond Honding for eoch unit ordered.
It Residents odd 7\% Soles Tox VISA
Coll or write for our 528 pg . Cotclog. 0nly 54.95 - FREE with order.

ow you can train at home in your spare time for a ior or school We kepair Specialist. No meed too quit your yob or school. We show you how to how to haot and repair videocassette recorders and TV sets, make of thdle house calls and shop repairs for almost any make of television or VCR You learn about TV receivers, tuners and antennas, X-ray emission, the characteristics of sound, how electrical impulses are converted into a TV picture, and much, much more. Tools are included with your course so you can get hands-on practice as you follow the lessons step by step. Send for free facts about opportunities in IV VCR Repair and find out how you can start making money in this great career.

Experts show you what to do, how to
do it...guide you every step of the way! Everything is explained in easy-to-understand language with plenty of drawings, photos and diagrams. But if there is ever anything in your lessons you don't understand, you can write or phone your instructor and you can count on getting an authoritative answer. Send for free facts and color brochire No cost No obligation No salesman will visit

MAIL COUPON TODAY
 9 MC 9 ind 925 Oak Street, Scranton, PA 18515
Please send me free facts on how I can leam TV/VCR Repair at home in my spare time. No salesman will visit.

Name
 Age Address tate

City/State

 ZipPhone
तA A Subsidiary of National Education Coporation CIRCLE 188 ON FREE INFORMATION CARD

FOR FREE CATALOG, CALL OR WRITE: JAN CRYSTALS
p.O. BOX 06017 FORT MYERS, FL 33906 (813) 936-2397

VISA

TOLL-FREE: 1-800-JAN-XTAL (526-9825)

FAX ORDERS: 1-813-936-3750

EOUIPMENT REPORTS

WHEN ENGINEERS AND TECHNICIANS think about high-tech test equipment, multimeters don't usually come to mind. But many of today's digital multimeters are chock-full of high-tech features. A case in point is the Fluke 85 DMM from the John Fluke Mfg. Co., Inc. (P.O. Box C9090, Everett, WA 98206).

As is becoming common, the meter can measure more than voltage, current, and resistance: Frequency, capacitance, and con-ductance-measurement capabilities are included in the Fluke 85 's features. A host of alternate modes that add "smarts" to the meter, along with numerous human-engineering features, make the Fluke 85 stand out from a crowded field. Before we get into some of the special features, let's look at the basic specifications.
The Fluke 85 measures about $73 / 8 \times 11 / 4-33 / 8$ inches and weighs $121 / 2$ ounces. Functions are selected using a single rotary switch in the center of the meter's front panel. A $33 / 4$ (4000-count) digit LCD, four test-lead input jacks, and 7 pushbuttons for feature selection complete the front panel.

Five AC voltage ranges, from 400 millivolts through 1000 volts, offer a worst-case accuracy of $\pm 0.5 \% \pm 4$ counts for $60-\mathrm{Hz}$ sine
waves. Accuracy decreases for higher-frequency sinewaves; but even at 20 kHz , the specified accuracy is $\pm 4 \% \pm 4$ counts for the highest specified range of 400 volts.

The Fluke 85 also offers five DC voltage ranges, from 400 millivolts through 1000 volts. The specified accuracy is similarly impressive: $\pm 0.1 \% \pm 1$ digit. Six resistance ranges, from 400 ohms through 40 megohms full scale, boast accuracy better than $\pm 0.2 \% \pm 1$ count on all but the highest range. A 40 -nanosiemen conductance range effectively extends the resistance measurement capability to 100,000 megohms for testing leakage in insulators, diodes, circuit boards, and the like. An impressive accuracy within $\pm 1 \% \pm$ 10 counts is offered for conductance measurements.

For measuring current, 6 AC and 6 DC ranges, from 400 microamps to 10 amps , provide a worst-case accuracy of $\pm 0.6 \% \pm 2$ counts. Capacitance measurements, in four ranges from 5 nanofarads to 5 microfarads, provide an accuracy of $\pm 1 \% \pm 2$ counts. Frequency measurements in four ranges from 200 to 200 kHz provide an accuracy of $.005 \% \pm 1$ digit.
(Continued on page 20) CIRCLE 104 ON FREE INFORMATION CARD

PORTABLE SOLDERING IRONS ARE MEREly a convenience for most of us. But they're a must for field-service technicians, who can't count on having a source of power available where they need it. A rechargeable battery-operated iron can fill the need nicely-but only if you can get it back to its charging holster between jobs.

If you need a portable soldering iron that you can leave in your tool box indefinitely without it losing its charge, then a butane-gas powered tool is your only sensible choice. While they've been around for a few years, we were reminded of their convenience and versatility when we recently examined the Model $P-1 K$ butane gas-powered soldering tool kit from Portasol, Inc. (7422 Carmel Executive Park, Charlotte, NC 28226).

The kit, which comes packaged in a rugged plastic storage case, includes the soldering tool, a 2.4 $\mathrm{mm}(3 / 32$ inch) soldering tip, and three other tips that convert the tool into a blow torch, a hot-air blower, and a hot knife. A tipcleaning sponge, a safety stand, and a cap (that doubles as a flint lighter) complete the kit.

The soldering tool measures about $61 / 2$ inches with a tip in place, and less than 7 inches with the cap on. Full of fuel and with a tip in

FIG. 1
place, the soldering iron weighs just over 2 ounces. It's certainly light enough to feel at home in a shirt pocket-which is probably why a shirt-pocket clip is included on the cap.

In continuous use, a single filling of butane provides about 90 minutes of use. When that runs out, standard butane cigarettelighter fuel can be used to refill the Portasol. A catalytic converter in the soldering tip provides heat from a flameless combustion (except, of course, when the blowtorch tip is in place). An adjustable temperature control on the bottom of the tool provides the equivalent of a $10-60$-watt soldering iron.

The cap contains a flint lighter which uses standard, replaceable flints. After lighting, it takes the Portasol soldering tool slightly over one half minute to come up to operating temperature. When you're finished, the cap can be replaced immediately. As a safety feature, replacing the cap automatically shuts off the gas on/off control.

While convenience and portability are certainly good reasons to choose the Portasol butane gas-powered soldering tool, there's yet another good reason: There is virtually no risk of leakage current that could damage sensitive circuits.

The Portasol P-1K took kit sells for $\$ 54.95$. The soldering iron itself (the model $P-1$) is available for $\$ 29.99$, including a $3 / 32$-inch tip. It's a bargain for anyone who is looking for cordless convenience. If you find yourself in remote or lim-ited-space situations, then you know that this portable soldering tool will pay for itself virtually the first time you need it.

R-E

DIGITAL VIDEO STABILIZER ELIMINATES ALL VIDEO COPY PROTECTIONS

	$\begin{aligned} & 1 \text { Unit } 10+ \\ & \ldots \\ & \hline \$ 55 \end{aligned}$
Jerrold SB w/Trim	. $\$ 90$..... $\$ 70$
Oak N-12 (w/VS)	\$89 \$65
Scientific Atlanta	. \$109....\$75
Pioneer	. \$109....\$75
Panason	\$98......\$79
,	79

We Beat Anyone's Price! 30 Days Money Back Quaranty Free Catalog

Visa, M/C, COD or send money order to:
US Cable TV Inc. Dept. KAW
4100 N.Powerline Rd., Suite F-4
Pompano Beach, Fl 33073

Please have make and model number of the equipment used in your area ready.

No Florida Sales!
It's not the intent of US Cable TV Inc. to defraud any pay TV operator and we will not assist any company or individual in doing so.

Put Professional Knowledge and a COLLEGE DEGRE
in your Technical Career through HOME

Add prestige and earning power to your technical career by earning your Associate or Bachelor degree through directed home study.
Grantham College of Engineering awards accredited degrees in
electronics and computers.
An important part of being prepared to move $u p$ is holding the right college degree, and the absolutely necessary part is knowing your field. Grantham can help you both ways-to learn more and to earn your degree in the process.

Grantham offers two degree pro-grams-one with major emphasis in electronics, the other with major emphasis in computers. Associate and bachelor degrees are awarded in each program, and both programs are available completely by correspondence.

No commuting to class. Study at your own pace, while continuing on your present job. Learn from easy-to-understand lessons, with help from your Grantham instructors when you need it.

Write for our free catalog (see address below), or phone us at toll-free 1-800-955-2527 (for catalog requests only) and ask for our "degree catalog."

Accredited by the Accrediting Commission of the National Home Study Council

GRANTHAM
College of Engineering
10570 Humbolt Street
Los Alamitos, CA 90720

EQUIPMENT REPORT

continued from page 18

Features

Although the basic specifications of the Fluke 85 are, indeed, impressive, they tell only half the story. For example, one of our favorite features is a MIN/MAX recording mode in which the meter stores the lowest and highest readings while also calculating the true average of all the readings taken over a period as long as 24 hours. It's ideal for catching intermittents, or jut to take readings while you are operating the equipment under test and can't watch the meter. We used the meter to measure the AC line voltage over a 12 -hour period, and found that it ranged from 104.0 volts to 124.4 volts, with an average of 120.6 volts.

Two recording modes, one with a $100-\mathrm{ms}$ response time, the other, a "high-accuracy" mode with a 1 second response time are offered. Every time a new minimum or maximum reading registers, the meter's beeper will sound. Min/ max readings are available for voltage, current, resistance, and frequency measurements.

A relative-measurement mode is also available. For relative measurements, a reading is stored in memory. The display shows the difference between the stored value and subsequent readings.

In the relative-measurement mode, the analog bargraphwhich acts just like an analog meter needle in most modes-becomes a zero-center meter. In the other modes, the bargraph can make certain measurements much easier than is normally possible with digital meters. Peaking or nulling a signal, for example, can be seen easily with the bargraph, while changing digital displays usually cause confusion.

An alternate frequency-counter mode makes it possible to measure the duty cycle of input signals. Positive- or negative-edge triggering is selectable.

The little things count

The technical specifications and the measurement features of the Fluke 85 are enough to recom-
mend the meter to anyone who needs to make a wide range of accurate measurements. But it's the "little things" that the meter offers that really show off Fluke's test-equipment experience.

The front-panel knob and pushbuttons are clearly marked and easy to use. However, as with just about every other DMM, it's necessary to switch the test leads if you switch from voltage to current measurements. We all know how easy it is to forget to switch the leads. That's why Fluke incorporates a beeper that lets you know that the leads are not inserted correctly for the measurement you want to make. It's sure to greatly reduce the number of blown safety fuses caused by neglecting to switch leads.
A touch-hold feature, which freezes the display, also makes the Fluke 85 easier to use.
A holster with Fluke's Flex-Stand is included with the meter. The bright yellow holster not only makes the meter easy to find, it offers an added degree of protection. The Flex-Stand tilt bale can be used to stand the meter up. But because the bale is flexible, it can be used to hang the meter over a convenient protuberance, including your belt. Two test-probe clips hold the probes for storage. The probes can be clipped in the holster in operating position, which allows you to use the meter much as you would a logic probe.

The Fluke 85 sells for $\$ 239$. Two other meters round out Fluke's 80 Series. The $\$ 199$ Fluke 83 offers the same features of the Fluke 85 , but with lower accuracy and frequency response. The $\$ 289$ Fluke 87 offers not only greater accuracy, but extra features as well. For example, the Fluke 87 offers a $41 / 2$-digit (20,000 count) display, and backlighting, too. Like the other meters in the series, the Fluke 87 features a min/max mode. But it goes one better by adding a PEAK min/max mode that can capture transients to 1 millisecond or sinewave peaks to 400 Hz .

If you are in the market for a new multimeter, don't make a decision until you give at least a serious look to Fluke's 80 Series. They represent the state of the art of digital multimeters.

REAncR REALUER

- PAUL WHITEMAN has turned to us in desperation. He needs a copy of the schematic or, better yet, the service manual for an $A B$ Systems' power amplifier, model 1201a. He'd gladly pay fair costs and the postage to send it to 404 Dawes Road, Toronto, Ontario, M4B 2E4, Canada.
- When G.H.M. requested the service manual for a Fisher 400 in a previous issue of Radio-Electronics, a few readers were kind enough to respond-and one of them now has a request of his own. MICHAEL WOLIN needs factory-service information on a KLH model 40 tape recorder (the latest, "improved" model). His address is 440 Pratt Street, Longmont, CO 80501.
- A long-time Radio-Electronics reader from across the Atlantic, SAM HOSENBOCUS, would like to correspond with American electronics hobbyists. "He is particularly interested in the surveillance field, and would like to exchange information and diagrams. Write to him at 13 Victoria Terrace, Leeds LS3 1BX, W. Yorkshire, England.
- DENNIS BETZ is in the dark without the parts list for his Tigersuarus 210/A power amp, made by Southwest Technical Products of Texas, in the mid-1970's. If you have a copy of the parts list, or can point him in the right direction, write to 125 N. Railroad St., Annville, PA 17003.
- WALDO ARNHOLZ never expected to be writing to RadioElectronics for help. However, all his efforts to find a complete schematic of the chassis of his Audiophonic stereo receiver, model $S R-2150$, have left him empty-handed. He'd like to hear from anyone with either the manufacturer's address or the schematic, and he's willing to pay for the schematic copy. Send the information to 1925 Hollow View Drive, Bettendorf, IA 52722.

ELEVEN-PIECE RACHET TOOL KIT Includes reversible ratchet handle, extension bar, six bits, two precision screwdrivers, and a cutter. Comes in fitted case. Get one for your shop, another for your car, another for your tool kit. To order send \$11.75 USA shipping only. ELECTRONIC TECHNOLOGY TODAY INC., PO Box 240, Massapequa Park, NY 11762-0240.

CALL NOW AND RESERVE YOUR SPACE

- $6 \times$ rate $\$ 940.00$ per each insertion.
- Fast reader service cycle.
- Short lead time for the placement of ads.
- We typeset and layout the ad at no additional charge.

Call 516-293-3000 to reserve space. Ask for Arline Fishman. Limited number of pages available. Mail materials to: mini-ADS, RADIO-ELECTRONICS, 500B Bi-County Blvd., Farmingdale, NY 11735.

THE MODEL WTT-20 IS ONLY THE SIZE OF A DIME, yet transmits both sides of a telephone conversation to any FM radio with crystal clarity. Telephone line powered - never needs a battery! Up to $1 / 4$ mile range. Adjustable from $70-130 \mathrm{MHZ}$. Complete kit $\mathbf{\$ 2 9 . 9 5}$ $+\$ 1.50 \mathrm{~S}+\mathrm{H}$. Free Shipping on 2 or more! COD add \$4. Call or send VISA, MC, MO. DECO INDUSTRIES, Box 607, Bedford Hills, NY 10507. (914) 232-3878.

CIRCLE 127 ON FREE INFORMATION CARD

CABLE TV CONVERTERS AND DESCRAMBLERS SB-3 $\$ 79.00$ TRI-BI $\$ 95.00$ MLD- $\$ 85.00$ M35B $\$ 89.00$ JRX-DIC $\$ 129.00$ Special combos available. We ship COD. Quantity discounts. Call for pricing on other products. Dealers wanted. FREE CATALOG. We stand behind our products where others fail. One year warranty. ACE PRODUCTS. P.O. Box 582, Saco, ME 040721 (800) 234-0726.
CIRCLE 75 ON FREE INFORMATION CARD

SIMPLY SNAP THE WAT-50 MINIATURE FM TRANSMITTER on top of a 9 v battery and hear every sound in an entire house up to 1 mile away! Adjustable from 70-130 MHZ. Use with any FM radio. Complete kit $\$ 29.95+$ $\$ 1.50 \mathrm{~S}+\mathrm{H}$. Free shipping on 2 or more! COD add \$4. Call or send VISA, MC, MO. DECO INDUSTRIES, Box 607, Bedford Hills, NY 10507. (914) 232-3878.

CIRCLE 127 ON FREE INFORMATION CARD

New Products

IEEE-488 BUS ANALYZER.

For detecting and analyzing bus difficulties such as program errors, incomplete device responses, timing errors, incompatible instruments or software, and cable problems, ICS Electronics has introduced the ICS 4811 Analyzer. The small, self-contained analyzer can be used to monitor bus traffic or as a dedicated data-acquisition system. When set to the HANDSHAKE mode, the 4811 can act like any other IEEE-488 device. With the handshake disabled, it can be transparent to the controller and other instruments on the bus. It can be programmed to emulate a device responding to addressed requests for system debugging and, when configured as a pattern generator, the 4811 can provide high-speed data and command output. The versatile device can function as the system controller or as a controller emulator for fullsystem tests.

Weighing less than eight pounds and requiring no external power supply or computer, the bus analyzer can be carried to any testing site. Its nonvolatile 128 K

CIRCLE 35 ON FREE INFORMATION CARD
memory lets the unit store data and analyze it at another location, or send it to a computer. For uploading and downloading to a PC, the 4811 also comes with a standard RS-232 port.

The included software allows optional interactive control and data display of all analyzer functions from any DOS-based instrument, without impacting system operation. The config function, located on the front-panel membrane keypad, is used to select the function, number base, serial parameters, and other
functional parameters. Those setup parameters can be stored and recalled for subsequent use. The analyzer's 8 -line $\times 40$-character LCD shows bus data in either ASCII, octal, hex, binary, decimal, or in disassembled bus mnemonics.

The ICS 4811 Analyzer costs \$1995.00; an optional MS-DOS software package, which provides extensive post-processing and analysis of bus data, costs \$500.00.-ICS Electronics Corporation, 2185 Old Oakland Road, San Jose, CA 95131.

12-BIT A/D CONVERTER. Alpha Products' FA-154 is a high-speed, 12 -bit analog-to-digital converter designed for high-speed data acquisition and signal processing. Its conversion speed is only $10 \mu \mathrm{~s}$, and each of its eight input channels will accept $0-5$-volt signals. A variable-gain amplifier permits the reading of signals less than $1 \mathrm{LSB}(1.2 \mathrm{mV})$. The FA-154 runs on all IBMPC bus machines, Apple II's, Commodores, Tandy, and other computers.

CIRCLE 36 ON FREE

 INFORMATION CARDThe FA-154 analog-to-digital converter costs \$179.00.-Alpha Products, 242 West Avenue, Darien, CT 96820 .

DUAL DATA ANALYZER. Containing two BERT's, two data-line monitors, and two terminal emulators in one compact package, the Gemini 1022 from Telecom Analysis Systems (TAS) simplifies bench-top testing of data-communications equipment such as modems, ISDN terminal adapters, and DDS sets. It performs bit error-rate, throughput, and pollingperformance tests at rates up to 72 kilobytes per second. The tests can be run
simultaneously at both ends of the communications path, cutting in half the amount of equipment needed for an end-to-end test.

A built-in call-setup feature eliminates the need for separate data terminals, line monitors, and A / B switches when testing auto-dial modems, which reduces the cost and complexity of modem-testing arrangements. Gemini uses a variety of protocols to communicate with modems, and also monitors and displays modem call-setup commands, as well as command responses.

CIRCLE 37 ON FREE INFORMATION CARD

The analyzer can be controlled either through its front-panel keypad and display or through its built-in RS-232 and GPIB interfaces. The simple control-interface commands make it easy to incorporate the unit into automatic modem-test systems. A built-in RS-232-to-GPIB protocol converter allows control of several pieces of GPIB equipment from a single RS-232 port. Its plug-in software cartridge makes it easy to add more features later, and Gemini can be combined with other products from TAS to make a compact, completely automatic, modem-test system.

The Gemini 1022 dual data analyzer costs $\$ 5950.00$. Telecom Analysis Systems, Inc., 34 Industrial Way East, Eatontown, NJ 07724.

WRIST-STRAP TESTER. Designed to detect malfunctions or breakage in wriststrap assemblies, Plastic Systems' WT-6600 also enhances ESD protection. The device also detects inadequate contact between band and operator.

CIRCLE 38 ON FREE INFORMATION CARD

The tester is accurate, portable, and easy to use in electronics and other fields where ESD is a concern. The tester indicates hazard at readings of less than 470 kilohms, ok at less than 10 megohms and higher than 470 kilohms, and CAUTION at readings higher than 10 megohms.

The WT-6600 wrist-strap tester costs $\$ 100.00$.-Plastic Systems, Inc., 261 Cedar Hill Street, Marlboro, MA 01752.

MOUNTING KIT. The MS10 mounting kit is designed to make the CALEX XW-series " U "-case-size DC-to-DC converters ready to use. The CALEX XW DC-to-DC converter series includes six single- and six dual-output units with up to 30 watts of isolated and highly regulated low-noise output power. Single-output units have input-voltage ranges of $9-36$ or $20-72$ volts; the dual-output units have 9-18-, 18-36-, or 36-72-volt input ranges.

CIRCLE 39 ON FREE INFORMATION CARD

The MS-10 converter consists of a PC board, eight single-pin gold-plated sockets, and input/output barrier strips for easy screwdriver connections. The kit is constructed of $1 / 16$-inch glass epoxy and measures 3.25 by 6.3 inches. There are four holes in the board, on 2.75×5.5-inch centers, for chassis mounting.

The MS-10 DC-to-DC converter kit costs $\$ 36.00$; the XW converters range in price form $\$ 160.00$ to $\$ 165.00$ - CALEX Mfg. Co., Inc., 3355 Vincent Road, Pleasant Hill, CA 94523.

DIGITAL PANEL METERS. Measuring less than 1×2 inches; the ACCULEX $D P-352 J$ and $D P-352 K$ ther-mocouple-input Digital Panel Meters (DPM's) have large 3.5 -digit LED displays that can be read in direct sunlight as well as in lowlight situations. The highperformance $D P-352 J$ and $D P-352 \mathrm{~K}$ support J - and K type thermocouples, respectively. They provide

CIRCLE 40 ON FREE INFORMATION CARD

cold junction compensation and display directly in degrees Centigrade. A fullscale display range of $0-200^{\circ} \mathrm{C}$ is standard. Screwterminal connectors for both primary operating power and direct signal input allow quick and easy field installation

The DP-352J/K's full differential input and dualslope integrating A/D converters, combined with common-mode rejection capability of greater than 86 dns, allow precise temperature measurements even under poor environmental and electrical conditions. Their accuracy is rated to 1% full scale (± 1 digit) with an operating temperature range of $0-50^{\circ} \mathrm{C}$.

Cut Your Video Servicing Time By 54\%

With the Market Proven VA62 Universal Video Analyzing System.

Today's VCRs, TVs, and MTS Stereo TVs require a proven method to quickly isolate the defective component. New technology has made simple problem solving a time-consuming and expensive procedure.

A survey of over 1500 Video Analyzer owners has shown that the VA62's unique signal substitution method has reduced their video servicing time by an average of 54%, and increased their servicing profits.

With a low +5 volts DC at 250 mA primary operating power, the DPM's can be used for field/mobile use or as standard temperature monitors for automotive/ marine/avionics applications. Other applications include energy management; electronic test and burn-in chambers; marine, automotive, and medical instrumentation; petrochemical processing; and biochemical and biomedical R\&D.

The DP-352J and DP-352K thermocouple-input digital panel meters each cost \$119.00.-ACCULEX, A MetraByte Company, 440 Myles Standish Blvd., Taunton, MA 02780.

PIN-FIN HEAT SINK. A castaluminum, pin-fin heat sink for cooling $14 \times 14-$ and 15×15-pin array (PGA) packages is now commercially available from Aavid Engineering. Model 567900 is made in a high-conductivity aluminum alloy cast in a staggered-pin configura-

CIRCLE 41 ON FREE INFORMATION CARD
tion, providing highly efficient cooling for those popular PGA packages.

The advanced aluminumcasting technology used in their manufacture produces a denser, more thermally efficient heat sink than is possible to attain using conventional die casting. Enhanced conductivity, combined with the efficient pinfin cooling surface, ensures low semiconductor temperatures at high poweroutput levels.

The heat sink provides rapid heat dissipation for
any high-speed, high power (greater than 3 watts) PGA package-including bipolar, BICOS, and highdensity CMOS. Model 567900 has a thermal resistance of $8^{\circ} \mathrm{C} / \mathrm{W}$ with a load of 5 -watts under natural convection. The mounting surface is smooth and flat, with an edge stop for simplified self-fixing and adhesive bonding. The heat sink is available in black-anodized and gold-chromate finishes.

The model 567900 pin-fin heat sink costs $\$ 1.63$ in lots of 1000.-Aavid Engineering, Inc., One Kool Path, P.O. Box 400, Laconia, NH 03247.

S-VHS TESTING OPTION.

 An optional add-on for several color-TV pattern generators from John Fluke Mfg. Co. provides the capability to test Super-VHS VCR's. The PM 9553 Y/C option provides the separate luminance (Y) and chrominance (C) signals used in S-VHS recording and playback to reduce cross-contamination

CIRCLE 42 ON FREE INFORMATION CARD
between the signals. Its versatility is further enhanced by its standard RGB-output signals.
The PM 9553 Y/C option fits in the PM $5514 \mathrm{~V}, P M$ 5515, and PM 5518 (pictured here) color pattern generators. It can be installed at the time of purchase or retrofitted to existing pattern generators.
Factory installed, the PM 9553 Y/C option carries a list price of $\$ 600.00$.-John Fluke Mfg. Co., Inc., P.O. Box 9090, Everett, WA 98206; Tel. 800-443-5853.

SOLDERING SYSTEM. With its patented "thermal thrust" tip design, the Ungar 9910HC delivers 40% higher thermal capacity than micro irons that use

KENWOOD oscalloscopes

 If you want better measurements, check these figures out.| $K E N W$ | | | |
| :---: | :---: | :---: | :---: |
| If you waint better measurements, | | | |
| analog o | scilloscopes w/o readout | regular | Sale |
| CS-1021 | 20 MHz , Dual Channel | 519.00 | 399.95 |
| CS-5135 | $40 \mathrm{MHz} 2 \mathrm{CH}, 4$-Trace, Delayed Sweep | 895.00 | 719.95 |
| CS-5155 | $50 \mathrm{MHz} 3 \mathrm{CH}, 6-\mathrm{Trace}$, Delayed Sweep | 995.00 | 819.95 |
| CS-5165 | $60 \mathrm{MHz} 3 \mathrm{CH}, 6$-Trace, Delayed Sweep | 1095.00 | 899.95 |
| CS-2150 | $150 \mathrm{MHz4CH}, 8$-Trace, Delayed Sweep | 2395.00 | 1495.95 |
| ANALOG OSCILLOSCOPES W/READOUT/CURSORS | | | |
| $\begin{aligned} & \text { CS }-5130 \\ & \text { CS }-5140 \end{aligned}$ | $40 \mathrm{MHz} 2 \mathrm{CH}, 4$-Trace, Delayed Sweep | 1095.00 | 899.95 |
| | Analog $40 \mathrm{MHz} / 100 \mathrm{MHz}$ (Equivalent | | |
| | Sampling) 2CH,Readout Cursor | 1395.00 | 999.95 |
| CS-5170 | $100 \mathrm{MHz}, 2 \mathrm{CH}, 4$-Trace, Delayed Sweep | 1695.00 | 1399.95 |
| CS-6010 | $100 \mathrm{MHz}, 4 \mathrm{CH}, 10$-Trace, Delayed Sweep | 1995.00 | 1699.95 |
| CS-6020 | $150 \mathrm{MHz}, 4 \mathrm{CH}, 10$-Trace, Delayed Sweep | 2395.00 | 1999.95 |
| digital storage oscilloscope | | | |
| CS-8010 | Digital Storage Oscilloscope 2 CH , Readout/Cursor 10 M Samples/Sec. 20MHz | | |
| | Real Time | 1495.00 | 1299.95 |

Kenwood Test Equipment. From the company youve been listening to for years.

```
8931 Brookville Rd.
Silver Spring, Md. 20910
(800) 638-2020 (301) 587-7824
Fax (301) 585-5402
Easy Order Fax Line (800) 545-0058
```


800-638-2020
Complete Kenwood Line Available "Call For Your Price Quotations"

THE ELECTRONIC GOLDMINE

MINI GEIGER COUNTER KIT

C6430 $\quad \$ 59.95$	
	$20 \mathrm{~W}+20 \mathrm{~W}$ ST

CIRCLE 178 ON FREE INFORMATION CARD

CIRCLE 43 ON FREE
INFORMATION CARD
standard tips. Thermal ca-pacity-the iron's ability to minimize and quickly recover from heat loss-determines the system's ability to make repetitive and reliable solder joints. A higher capacity is generally required for soldering larger parts. The Ungar system combines the comfort and simplicity of a small iron with the high capacity of a much larger one, so it can be used for high-mass, heavy heat-sink applications as well as for lighter work.

The ESD-protected

9910 HC has a closed-loop circuit for temperature stability at idle. It also features zero switching, reliable grounding form tip to plug, a durable ceramic heater, and a cool grip. The 24 -volt micro iron can be customized with a choice of three additional, easy-toconnect irons with a variety of tips. The system meets or exceeds government soldering specifications DOD-STD-2000-1B, WS-6536E, MIL-S-47543E, and MIL-STD-2000. If you are looking for an ESD-protected soldering system that's versatile enough to cover all of your soldering needs, than the 9910 HC may be exactly what you need.

The 9910 HC soldering system has a suggested retail price of $\$ 236.00$.-Ungar, Division of Eldon Industries, Inc., 5620 Knott Avenue, Buena Park, CA 90621.

16-BIT D/A CONVERTER. A

 new family of extended temperature-range, 16 -bit digital-to-analog converters

CIRCLE 44 ON FREE INFORMATION CARD
(DAC's) is targeted for demanding military, aerospace, and industrial applications. Micro Networks' MN3290 series is exactly pin- and function-compatible with older, industrystandard DAC71/72 devices, and is expected to replace many of those older devices in new and existing military programs.

There are 37 different models in the series, including six different voltage- and current-output devices that each offer four different electrical grades to address both commercial $\left(0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$) and military ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) applications. The extended temperature-
range devices are available screened in accordance with military specifications.

The MN3290 series DAC's are made using a bipolar process. They are TTL compatible and contain an onchip, low-noise, buriedZener reference. The devices are packaged in standard, 24-pin, ceramic DIP's. All of them guarantee 14-bit monotonicity at room temperature; the higher grade devices guarantee 14bit monotonicity and $\pm 0.006 \%$ FSR integral linearity over the entire extended temperature range.
The MN3290 commercial and military-standard cur-rent-output devices are priced from $\$ 31.00$ and from $\$ 75.00$, respectively, in quantities of 100 . The commercial and military-standard voltage-output devices are priced from $\$ 33.00$ and from $\$ 75.00$, respectively, also in quantities of 100.Micro Networks/Unitrode Corporation, 324 Clark Street, Worcester, MA 01606.

R-E

Take any one of these HANDBOOKS ELECTRONICS and CONTROL

- your one source for engineering books from over 100 different publishers

- the latest and best information in your field
- discounts of up to 40% off publishers' list prices

Publisher's Price \$119.50

ANTENNA ENGINEERING HANDBOOK, Second Edition
Edited by R. C. Johnson and H. Jasik

- 1,408 pages, 946 illustrations
- covers all types of antennas currently in use with a separate chapter devoted to each
- provides detailed data on physical fundamentals, operating principles, design techniques, and performance data
- up-to-the-minute information on antenna applications
- a must for those involved in any phase of antenna engineering

Publisher's Price $\$ 78.00$

STANDARD HANDBOOK OF ENGINEERING CALCULATIONS, Second Edition
By T. G. Hicks

- 1,468 pages, 793 illustrations, 499 tables
- puts more than 1,100 specific calculation procedures at your fingertips
- every calculation procedure gives the exact, numbered steps to follow for a quick, accurate solution
- virtually all procedures can be easily programmed on your PC or calculator
- uses USCS and SI units in all calculation procedures

Publisher's Price $\$ 99.95$
TELEVISION ENGINEERING HANDBOOK
Edited by K. B. Benson

- 1,478 pages, 1,091 illustrations
- packed with all the technical information today's engineer needs to design, operate, and maintain every type of television equipment
- extensive coverage of receivers, broadcast equipment, video tape recording, video disc recording, and the latest technological advances
- provides television system and industry standards for the U.S. and other countries
- the most comprehensive book on the subject of television engineering

for only $\$ 14.95$ - when you join the ENGINEERS' BOOK CLUB

Publisher's Price \$94.95

MODERN ELECTRONIC CIRCUITS REFERENCE MANUAL

By J. T. Markus

- 1,264 pages, 3,666 circuit diagrams
- a handy, desktop reference with 103 chapters organized by "family" grouping
- filled with predesigned and use-tested circuits to save you production time and money
- includes concise summaries of all the recent applications notes, journal articles, and reports on each circuit, efficiently organized and indexed for the practicing engineer

Publisher's Price $\$ 92.00$

STANDARD HANDBOOK FOR ELECTRICAL ENGINEERS, Twelfth Edition

Edited by D.G. Fink and H.W. Beaty

- 2,416 pages, 1,388 illustrations, 430 tables
- the essential reference for all electrical engineers
- ranges from basic circuits and measurements to advanced topics, such as power distribution and telecommunications
- fully updated to cover all recent advances and developments
- written and compiled by 115 contributors - all experts in their fields

209/758

4 reasons

 to join today!

1. Best and newest books from all publishers! Books are selected from a wide range of publishers by expert editors and consultants to give you continuing access to the best and latest books in your field.
2. Big savings! Build your library and save money, too! Savings range up to 40% off publishers' list prices.
3. Bonus books! You will automatically be eligible to participate in our Bonus Book Plan that allows you savings up to 70% off the publishers' prices of many professional and general interest books!
4. Convenience! 14-16 times a year (about once every $3-4$ weeks) you receive the Club Bulletin FREE. It fully describes the Main Selection and alternate selections. A dated Reply Card is included. If you want the Main Selection, you simply do nothing - it will be shipped automatically. If you want an alternate selection - or no book at all - you simply indicate it on the Reply Card and return it by the date specified. You will have at least 10 days to decide. If, because of late delivery of the Bulletin you receive a Main Selection you do not want, you may return it for credit at the Club's expense.
As a Club member you agree only to the purchase of two additional books during your first year of membership. Membership may be discontinued by either you or the Club at any time after you have purchased the two additional books.

FOR FASTER SERVICE IN ENROLLING CALL TOLL FREE 1-800-2-MCGRAW
McGraw-Hill Book Clubs
Electronics and Control Engineers' Book Club
P.O. Box $\mathbf{5 8 2}$
Hightstown, NJ 08520-9959
Please enroll me as a member of the Electronics and
Control Engineers' Book Club® and send me the book I
have chosen for only $\$ 14.95$ plus local tax, postage and
handling. I agree to purchase a minimum of two addi-
tional books during my first year as outlined under the
Club plan described in this ad. Membership in the club is
cancellable by me or McGraw-Hill any time after the two
book purchase requirement has been fulfilled. A shipping
and handling charge is added to all shipments.

[^0]
$\overline{\text { New Lit }}$

INSTRUMENT CATALOG. Wide selections of instruments for test and measurement, plant maintenance, water-quality checks, and monitor/control applications are featured in this 44page brochure from Extech.

CIRCLE 45 ON FREE INFORMATION CARD

Photographs accompany every item listed, and the text includes helpful information on how to choose the right instrument for spe-
cific applications, as well as explanations of the instruments' features. There is no charge for the catalog.-Extech Instruments, 150 Bear Hill Road, Waltham, MA 02154; Tel. 617-890-7440.

INTERCONNECTION

 PARTS. The 1990 edition of L com's catalog includes more than 3,500 items. A full line of components and accessories for the electronic, computer, and communications markets is featuredincluding an extensive line of more than 1,200 readymade coaxial and data cables, baluns, IEEE-488 cables and accessories, patch panels, and line testers. To help the user evaluate the products listed, the catalog has full product descriptions,

CIRCLE 46 ON FREE INFORMATION CARD
usage information, and pricing up to moderate quantities. Some of the new products in this edition are modular and IBM tokenring wiring aids, an automatic and manual matrix switch, Wang-type surge protectors, Macintosh networking kits, and a new series of coaxial switches that are specifically made for panel mounting. The catalog is free upon request.-L-
com, Inc., 1755 Osgood Street, North Andover, MA 01845; Tel. 508-682-6936.

VCR-PARTS CROSS-REFERENCE. Providing the servicer with a quick reference source of key wear itemsbelts, motors, pressure rollers, and headwheelsThomson Consumer Elec-

CIRCLE 47 ON FREE
INFORMATION CARD

One tree can make 3,000,000 matches.

One match can burn $3,000,000$ trees.

CABLE-TV

SIGNAL REMOVERS

-FOR ELIMINATION OF SEVERE INTERFERENCE -FOR "CENSORING" OF ADULT BROADCASTS

- BANDWIDTH - 4 MHz AT 5 dB POINTS - INSERTION LOSS - 2 dB

MODEL	TUNING RANGE	$\begin{gathered} \text { FOR } \\ \text { CHANNELS } \end{gathered}$	PASSBAND	PRICE	SHIPPING
23 H	50.66 MHz	2.3 (or 6 meter ham)	50.300 MHz	\$30	$\begin{aligned} & \text { NO } \\ & \text { SHIPPING } \\ & \text { or } \\ & \text { C.O.D. } \\ & \text { CHARGES } \end{aligned}$
46FM	66.108 MHz	4.5.6 (or any FM)	50.300 MHz	\$30	
1417	120.144 MHz	14(A) 15 (B) 16 (C) 17 (D)	50.400 MHz	\$30	
1822	$144-174 \mathrm{MHz}$	18(E) 19(F) 20(G) 21 (H) 22 (1)	50.400 MHz	\$30	
713	$174-216 \mathrm{MHz}$	7.8.9.10.11.12.13	50.400 MHz	\$30	

3 for $\$ 75$ - 10 for $\$ 200$ - mix or match
CALL TOLL FREEFORC.O.D. OR SENDCHECKTOORDER FAST DELIVERY
30 DAY MONEY BACK GUARANTEE (3FILTERLIMIT)

Star Circuits

THROUGH HOME STUDY
Our New and Highly Effective Advanced-Placement Program for experienced Electronic Technicians grants credit for previous Schooling and Protessional Experience, and can greatly reduce the time required to complete Program and reach graduation. No residence schooling required for qualified Electronic Technicians. Through this Special Program you can pull all of the loose ends of your electronics background together and earn your B.S.E.E. Degree. Upgrade your status and pay to the Engineering Level. Advance Rapidly! Many finish in 12 months or less. Students and graduates in all 50 States and throughout the World. Established Over 40 Years! Write for free Descriptive Literature.
COOK'S INSTITUTE OF ELECTRONICS ENGINEERING

JACKSON, MISSISSIPPI 39212
tronics' VCR Key Items Cross Reference lists more than 900 models. The guide contains references to 90% of a servicer's parts needs for nine popular brands: RCA, GE, Hitachi, Magnovox, Panasonic, Philco, Philips, Quasar, and Sylvania. The Thomson stock number, as well as a reference number that corresponds to the number shown on the service-data parts list and on the exploded view diagram of the VCR model listed, is included. When combined with the Thomson cross-reference microfiche, the quick-reference guide provides access the entire VCR replacement parts line.-Thomson Consumer Electronics, Service Dealer Parts and Components Merchandising, 2000 Clements Bridge Road, Deptford, NJ 08096-2088.

APPLICATION NOTE. Motorola's Spice Model for TMOS Power MOSFETs (AN1043/D) includes a library of parameters on selected devices that can be used in conjunction with existing simulation programs. The library is available free of charge on $31 / 2$ - or $51 / 4$-inch disks for IBM-compatible computers (DK301/D and DK103/D, respectively), or on a 3 $3 / 2$-inch disk for use with Macintosh PC's (DK202/D). The note also

CIRCLE 48 ON FREE INFORMATION CARD
discusses the physics of power MOSFETs, implementation of a model for simulation programs, parameter extraction methods, and a comparison of a simulation with measured results. The application note and the TMOS Library disk are free.-Motorola Literature Distribution, P.O. Box 20912, Phoenix, AZ 85036; Tel. 1-800-521-6274.

Extend Your Frequency Counter Range To 1.3 GHz Without Extending Your Budget.

FC130A Frequency Counter
. 01 Hz to 1.3 GHz Frequency Range
8-Digit LED Display

Beckman Industrial'u
An Affiliate of Emerson Electric Co
For more information and the location of your nearest authorized Beckman Industrial dealer call 1-800-854-2708 (in California 1-800-227-9781). Instrumentation Products Division, 3883 Ruffin Road, San Diego, CA 92123-1898 (C) 1989 Beckman Industrial Corporation.

Specifications are subiect to change without notice.

ELENCO PRODUCTS AT DISCOUNT PRICES

Top quality scopes at a very reasonable price. Contains all desired features. Two $1 \mathrm{x}, 10 \mathrm{x}$ probes, diagrams and manual. Two year guarantee.

CW modulation

Whenever intelligence is added to a carrier, whether by FM, AM, FSK, SSB, or any other method, there are limitations imposed. The limitations are weighed against their strengths to determine the suitability of a given system for communications. ASCII, as opposed to Baudot, in RTTY is a good example of tradeoffs like that.

ASCII has a larger character set available but, since each character takes nearly twice as long to transmit, it is nearly twice as error prone. For transferring computer programs and lower-case text ASCII is the best, but
for communicating messages and news, Baudot is better. That's why some commercial carriers still use Baudot.

CW takes less bandwidth than any other modulation system but, when conditions are poor, it's less capable than FSK for a given data rate. Some of the advantages of CW are that it is narrow, slow, and has a limited character set. That might not sound like anything positive, but for getting a message through in the worst of conditions, there is nothing better.

Morse code is a series of tone bursts whose relative duration, and
relative absence, carries meaning. That puts a great burden on our receiving system to extract all the information available. Noise immunity is extremely important, and the only thing we know for sure about the tone we are demodulating is the frequency.

Noise by its very nature can appear for an instant to be the frequency we are trying to detect, but will not have a duration long enough to be valid. The faster the detector can detect the correct frequency of the incoming tone, the higher the resolution. That means we can extract greater detail about the signal we are listening to. If we can

All resistors are $1 / 4$-watt film except where otherwise indicated.
R1, R3, R6, R12, R43, R45, R49, R55, R81, R82, R89-39,000 ohms
R2, R9, R52, R53- 27,000 ohms
R4, R7, R8, R19, R22, R24, R59-R62, R85-47,000 ohms
R5, R13, R86, R87-68,000 ohms
R10, R11, R14, R28- $15,000 \mathrm{ohms}$
R15-R18, R69, R70-33,000 ohms
R21, R51, R76-220,000 ohms
R23, R90-20,000 ohms, $3 / 8$-inch single-turn potentiometer
R25, R26, R34, R74, R77-330 ohms
R27, R30, R31, R78, R79-2200 ohms
R20-270 ohms
R29, R32, R33, R35-R39, R41, R50, R56-R58, R63-R65, R71-R73, R75-1000 ohms
R40- 470 ohms
R42, R44, R48-48,000 ohms
R46, R47, R92- 10,000 ohms
R54, R88-30,000 ohms
R66, R91, R93, R94-20,000 ohms
R67, R68, R95, R96-20,000 ohms, 10-turn potentiometer
R80-4700 ohms
R83, R84-22,000 ohms
R100-R105-2000 ohms
Capacitors
C1, C2- $1000 \mu \mathrm{~F}$, electrolytic
C3, C29, C30, C40, C46, C63-10 $\mu \mathrm{F}$, electrolytic
C4-C28, C41, C47, C77, C78, C80-C82, C85-0.1 $\mu \mathrm{F}$, mylar
C31, C34-C36, C49, C51- 0.0047 $\mu \mathrm{F}$, mylar
C32, C33- $0.0027 \mu \mathrm{~F}$, mylar
C37, C38, C43, C44, C59-1 $\mu \mathrm{F}$, tantalum
C39, C45-2 $\mu \mathrm{F}$, tantalum
C42, C60-30 pF, ceramic
C48, C76, C79-0.22 $\mu \mathrm{F}$, mylar
C50, C52- $0.002 \mu \mathrm{~F}$, mylar
C53, C55- $0.003 \mu \mathrm{~F}$, mylar
C54, C56- $0.0005 \mu \mathrm{~F}$, mylar

PARTS LIST

C57, C58- $0.0068 \mu \mathrm{~F}$, mylar
C61, C62, C64, C65-0.047 $\mu \mathrm{F}$, mylar
C66-C69, C86-C89- $0.01 \mu \mathrm{~F}$, mylar
C70, C71- $0.15 \mu \mathrm{~F}$, mylar
C72, C73- $0.068 \mu \mathrm{~F}$, mylar
C74, C75- $0.03 \mu \mathrm{~F}$, mylar
C83, C84-0.001 $\mu \mathrm{F}$, mylar

Semiconductors

IC1, IC2-LM7805 5-volt regulator
IC3-LM7912-12-volt regulator
IC4-NE570 compander
IC5, IC26, IC36-LM311 voltage comparator
IC6, IC25-LM324 low-power quad op-amp
IC7, IC8, IC27, IC28-4066 quad bilateral switch
IC9-74LS14 hex low-power Schottky Schmitt-trigger inverter
IC10, IC11, IC14, IC15-74LS161 synchronous binary counter
IC12, IC16-74LS30 8-input NAND gate
IC13, IC17-74LS244 octal tri-state buffer
IC18-74LS 10 triple 3 -input NAND gate
IC19- $2.4576-\mathrm{MHz}$ crystal oscillator
IC20-74LS90 decade counter
IC21, IC24-not used
IC22-2732 EPROM
IC23-74154 4-to-16 line decoder
IC29-7416 hex inverter buffer with high-voltage open-collector outputs
IC30-74LS147 10-line decimal to 4 line BCD encoder
IC31, IC32-LM358N low-power dual op-amp
IC33-1488 quad MDTL line driver
IC34-1489 quad MDTL line receiver
IC35-7414 hex Schmitt-trigger inverter
IC37, IC42-74LS00 quad 2 -input NAND gate
IC38, IC39-LM555 timer
IC40-74LS 05 open collector hex inverter

IC41-4018 presettable divide-by- N counter
D1-D6-1N4003 rectifier diode
D7-4.3-volt Zener diode
D8-4.7-volt Zener diode
Q1, Q2-TIP42C PNP transistor
LED1, LED16-green light emitting diode
LED5, LED12-red light emitting diode
LED2-LED4, LED6-LED11, LED13-LED16
Other components
T1-FP24-500.
HDR1, HDR2-18-pin right angle header
HDR3-2-pin jumper header
S1, S4-DPDT PC-mount switch
S2-DPDT PC-mount switch with center off
S3-12-position rotary PC-mount switch
J1-J4-RCA-type jack, chassis mount
J5-DB25 connector
RY1, RY2-16-pin PC-mount relay
PL1-grounded AC line cord
Miscellaneous: case, hardware, wire, solder, etc.

Note: The following items for the PMX-200 Morse Detector are available from Power Mountain Systems, P.O. Box 161, Cora, Wyoming 82925. Double-sided silkscreened PC boards, $\$ 79.95$; discrete parts kit (no boards or case), $\$ 159.95$; pre-programmed EPROM, $\$ 15.95$; detector software package for IBM/compatible, $\$ 19.95$; black brushedaluminum case ready for you to drill, $\$ 79.95$; complete kit (contains everything), \$269.95; an assembled, aligned, and tested unit, $\$ 389.95$. All prices include UPS Ground, or mailing charges in the USA.

FIG. 1-IN THE FRONT END OF THE PMX-200 there are high- and low-pass, $24-\mathrm{dB}$-peroctave filters. The low-pass filter is fixed at 1650 Hz , and the high-pass filter is switch selectable ($170 \mathrm{~Hz}, 425 \mathrm{~Hz}$, and 850 Hz) for proper CW and RTTY operation.

FIG. 2-TWO SEPARATE DETECTORS make up the PMX-200. They each independently measure opposite half cycles.

FIG. 3-AFTER ACTUAL DETECTION, analog switches allow us to have four separate low-pass frequencies for CW and four for RTTY to further enhance performance.
detect the proper frequency fast enough, and reject noise fast enough, the detector stops contributing its limitations to the task of detecting the tone and we're left with the constrictions of the modulation system itself.

Devices like the venerable 567 tone decoder have severe limitations for Morse. They can lock to an incoming tone in 10 cycles only 90% of the time. That means that 10% of the time it takes longer. The variation in lockup time is completely random. If lock is lost for even a half cycle the problem starts all over again. A 567 in this application adds random inconsistency to the problem of decoding Morse code, and that we can do without!

The 567 was never designed for many of the applications for which it is being used-some talented people have managed to do amazing things with it. Unfortunately, it's just not the best way to go.

Phase-lock detectors work well for FSK since they're always locked to a constant carrier, as long as the carrier isn't lost due to noise. They don't do all that well for Morse because the carrier is missing half the time.

Using digital filter techniques, it's possible to measure each half cycle of incoming tone to determine its frequency. That is the reason why the

PMX-200 has such high resolution. In 60 milliseconds we can verify 255 times that the frequency is still present. If there's a signal in there, the detector can see it, rapidly and consistently.

RTTY data is transmitted at a 22 ms bit rate (45.45 baud or 60 wpm), so there's very little time to detect the proper frequency. At 110 baud, the timing is 9 ms per bit, which makes the problem even more difficult. If the frequency we are detecting is 1500 Hz , there is only an average of 13.5 cycles of tone per bit of information at 110 baud. There are, on average, 33 cycles of tone at 45.45 baud. As the baud rate increases there is less time to make an accurate decision, and fewer cycles to work with. Since we are detecting each half cycle, we can detect the signal 27 times per bit at 110 baud, and 66 times per bit at 45.45 baud.

Morse detector

In the front end of the PMX-200 we are using high- and low-pass, $24-\mathrm{dB}$ -per-octave filters (see Fig. 1). The lowpass filter is fixed at 1650 Hz , and the high-pass filter is switch-selectable ($170 \mathrm{~Hz}, 425 \mathrm{~Hz}$, and 850 Hz) for proper CW and RTTY operation. Switching is greatly simplified through the use of 4066 digitally con-
trolled analog switches.
The filter frequencies were selected so as to be in the upper middle of the audio passband of a typical amateur radio transceiver. High frequencies roll off quickly in this type of equipment above 2200 Hz or so. While it is true that higher frequencies give us more half cycles to detect, that has to be weighed against noise, audio passband, and other considerations.

The input-filter section consists of two separate filter systems. A lowpass filter section with a frequency cutoff set for 1650 Hz sets the upper bandpass frequency limit. The highpass filters, which set the low-frequency limit, have three different cutoffs depending on the setting of the shift-select switch. The cutoffs are $1200 \mathrm{~Hz}, 925 \mathrm{~Hz}$, and 500 Hz for 170 , 425 , and 850 shifts respectively.
The higher the Q of a bandpass filter- Q is equal to the operating frequency divided by the bandwidththe narrower is its response. As with nearly everything else, you can go too far trying to get a little better signal-to-noise ratio by using a very high-Q filter. The difficulty of narrow bandwidth is that the pulse response of a bandpass filter is equal to $1 /$ (bandwidth in Hz). That means a $1-\mathrm{Hz}$ wide filter would take 1 second to reach 90% of maximum amplitude. A $10-$ ms response requires at least $100-\mathrm{Hz}$ bandwidth.

	Freq. \& Count (10)	Count (Hex)	
	$2276 \mathrm{~Hz}=108$	6C	
	$2255 \mathrm{~Hz}=109$	6D	
	$2234 \mathrm{~Hz}=110$	6 E	
	$2214 \mathrm{~Hz}=111$	6 F	
	$2194 \mathrm{~Hz}=112$	70	
	$2175 \mathrm{~Hz}=113$	71	
	$2156 \mathrm{~Hz}=114$	72	
Center	$2137 \mathrm{~Hz}=115$	73	detection
Freq.	2125 Hz		width
	$2119 \mathrm{~Hz}=116$	74	92 Hz
	$2101 \mathrm{~Hz}=117$	75	
	$2083 \mathrm{~Hz}=118$	76	
	$2065 \mathrm{~Hz}=119$	77	
	$2048 \mathrm{~Hz}=120$	78	
	$2031 \mathrm{~Hz}=121$	79	
	$2014 \mathrm{~Hz}=122$	80	
	1998 Hz $=123$	81	

In the case of PMX-200, the initial bandpass filter is calculated for $250-300 \mathrm{~Hz}$ bandwidth. That was done to allow for minor component variations so that 1% parts weren't required, and also to take advantage of the quick response of the digital detector. As a general rule, it's better to use more filter sections set for a lower Q , than to try using a single filter section at high Q .

After filtering the incoming audio, an NE570 compandor (IC4) is used as a very fast AGC circuit. Both halves of the NE570 are used, and the dynamic range is very large. That means that audio input levels can vary by a wide margin without affecting performance.

An LM311 (IC5) is used as a hysteresis limiter, and converts the incoming sine wave to a square wave that can be used by the TTL-detector system. Hysteresis adds noise immunity to the detector. The voltage adjust (VADJ) provides a voltage to use as a precision crossover point, to guarantee that both halves of the square wave produced are equal.

There are two separate detectors that make up the PMX-200, and they each independently measure opposite half cycles. The TTL-level output from IC5, a LM311 (Fig. 1) is used to gate an internal oscillator to a pair of counters, each counter being made from a pair of 74LS161's. (One counter is formed by IC10 and IC11, and a second is formed by IC14 and IC15see Fig. 2.) Each pair is wired to act as one 8 -bit counter.

The clock input to the counters is disabled-and thus the counting
stops-when the TTL level corresponding to the current half-cycle ends, or when the counter output reaches FF. (The counter output will reach FF only with low-frequency signals that are strong enough to override the high-pass filtering). Since we know the clock frequency, we can determine the frequency of the tone by reading the 8 -bit value latched by the counters and the 74LS244 buffers. That 8 -bit value is then compared to the values stored in the EPROM, IC22, to determine what tuning LED's should be lit.

The tuning indicator, which is part of Fig. 1, consists of a 4-16 line decoder, IC23, that is under the control of the 2732 EPROM (IC22). There are 16 LED's on the front panel that can be selectively programmed to light, depending on the frequency detected and the switch settings. Three of the four lower output data lines are programmed to provide output for mark, space, and CW.

Here are the formulas for determining the frequency for a given 8 -bit detected value, and you can also see how the clock frequency was chosen, where:
$256=$ maximum count
Count $=$ decimal equivalent of the desired frequency

At maximum count, frequency is minimum
$K=(1 /($ min. freq. $) \times 2)$
Clock frequency $=1 /(\mathrm{K} / 256)$
Freq. cutoff $=1 /(2 \times$ ($1 /$ clock) \times count)
As an example, let's use a clock frequency of 491.52 kHz , and a target frequency of 2125 Hz . The calcula-
tions therefore yield the results shown in Table 1. In the EPROM we have programmed a complex lookup table that compares the latched 8 -bit value and switch settings to determine what LED should be lit on the display, and whether the corresponding detected frequency is valid.
Table 1 gives a detection bandwidth of 92 Hz , and the center frequency is within 4 Hz of being in the center of the passband. Since the detectors' performance is virtually unrelated to width of detection, you can go as narrow as 18 Hz . Get too narrow though, and you might be retuning your receiver more often and performance could decrease. Noise causes an apparent frequency shift due to slightly shifted zero crossing, making very narrow filter widths impractical.

The minimum width should be more than 1 count, due to aliasing. Aliasing is a counting error at the very edge of detection that causes a miscount. The error is easily worked around by adding one count of extra width to the desired detection bandwidth. You shouldn't try to get super-narrow-width detection, since noise presents a real problem. In fact, you should program for as much width as you can reasonably accept.

Due to the design of the system we can use a push-pull detector system for RTTY. That way we can actually measure the frequency rather than just saying that it is higher or lower than a specific threshold as in a typical dis-criminator-type detector. That enhances the noise immunity of the system, improving performance. Every little bit can make a difference (no pun intended).

After actual detection we use ana\log switches to allow us to have four separate low-pass frequencies for CW and four for RTTY to further enhance performance (see Fig. 3). The analog switches also allow us to use a lessexpensive single-pole rotary switch, S3, which saves money and eases assembly.

When we continue next month, we'll discuss the circuitry that allows you to interface the detector to your computer. We'll also look at the AFSK generator that allows you to use the detector to transmit RTTY signals. And, of course, we'll show you how to build the detector (will include PC Foil Patterns) and how to tune it so you can put it to work in your radio shack.

R-E

THERE'S A GLITCH IN YOUR POWER LINE and it's going to find you. Imagine that you're right in the middle of saving a file on your PC, or recording a program on your microprocessor-controlled stereo or VCR, and a powerline glitch causes the system to reset. Why? You may never even attempt to find out if it happens only once every month or two, but you should.

In business and industry, the problem becomes more than an inconvenience. Computers, communication devices, sensitive medical instruments, chemical processes, and the like, can succumb to power-line disturbances. A power problem can spell disaster for a small business who can't find a solution.
.Power problems can be especially frustrating for the electronics hobbyist. Even you, the solitary electronics buff, can be glitched at home. Your PC boards may burn out for no obvious reason, your PC data may be scrambled, your 10-meter transceiver may run hot, your VCR or stereo may drop dead, and the lights may dim when your refrigerator's compressor turns on. Knowing the causes and cures of power-line disturbances is valuable, technically and financially.

You don't have to be a research scientist or utility engineer to discover glitches and take action against them.

The most common way to clean up the power lines is to rely on surge suppressors. But clean power means more than no impulses. It also means eliminating any voltage sags, outages, impulses, surges, frequency errors, harmonics, grounding problems, high-frequency noise, waveshape faults, or RF interference.

FIG. 1-TYPICAL BRIDGE RECTIFIER, with voltage waveform shaped by an LC filter network. If only a pure resistive network were connected across points A, the waveform shown in Fig. 2-a would be seen with the aid of an oscilloscope.

Causes

Contrary to popular opinion, the vast majority of power problems
aren't caused by power utilities, but by their customers. Occasionally, albeit rarely, utilities are at fault, like when distribution loads are switched, or when large power-factor-correction capacitors kick in. Sometimes lightning or a car can hit a power pole, wreaking havoc with power lines. Such an interruption, if miles away, may not make your lights blink, but the resulting power line hash can blow your PC. Most often, however, transients can travel along a power line from other customers, especially if you're near an industrial area. Major offenders are arc welders or electrictrain yards.

However, the above are exceptions, and maybe 95% of disturbances are caused by either home equipment, or faulty or inadequate home wiring. Most utilities bend over backwards to locate problems on their end like low voltages, distribution or switching faults, or line harmonics. Sometimes they'll even attach a monitor or stripchart recorder to your meter to help find a problem.

Harmonics

One of the most common AC power problems is harmonic distor-
tion, or the unwanted generation of power-line voltage components at frequencies that are multiples of 60 Hz . Linear loads that draw power in proportion to the square of voltage exhibit far fewer problems. With rectifiers, however, strange things start happening to current waveforms. Figure 1 shows a full-wave bridge rectifier, while Fig. 2 shows the relevant voltages and currents.

The voltage across points A and C in Fig. 2- a is a full-wave, rectified sinusoid provided that only a purely resistive load were connected. Across points B and C , the LC filter produces the waveform shown in Fig. 2-b. The current from the bridge rectifier charges capacitor Cl for a small portion of each half cycle as shown in Fig. 2-c, and it supplies power to the load during that brief period. Capacitor Cl provides the power that drives the DC load for the remainder of the half cycle. Inductor L1 smooths the sharp points in the rectified voltage curve at b, but its effect on the following discussion is nil.

As the rectifier voltage drops to zero, the charge in Cl drives the DC load. Thus, current flows through transformer T1 for only a small portion of the sinusoid, as shown in Fig. 2-c, driving the DC load and recharging C 1 , so the energy is concentrated in short pulses. This pulsed current generates harmonics, making a transformer run hotter than it would for a pure $60-\mathrm{Hz}$ sinusoid with RMS power identical to that of the corrupt

FIG. 3-THE BMI 2400 POWERSCOPE power-transient measurement and recording system for single-phase DC, or single- or 3-phase AC. The instrument monitors sags, surges, impulses, waveshape faults, line-frequency variations, and high-frequency noise for singlephase AC or DC, has a built-in RS-232 bus to be used with an external processor to analyze total harmonic distortion and frequency spectral content, and has a full range of available accessories, including temperature and humidity sensors.

FIG. 4-THE BMI 4800 POWERSCOPE. While similar to the BMI 2400 in physical appearance, it has considerably more processing power, with up to four main and eight probe channels.
sinusoid with its harmonics. This is because the magnetic domains reverse polarity more rapidly than for the pure sinusoid, owing to the harmonics, heating the transformer core.

The bridge rectifier shown in Fig. 1 is waning in popularity, although harmonic generation is identical for more recent versions. Most computers and hi-tech gear now use switched-mode power supplies; those varieties are highly nonlinear and a major source of harmonics. If several loads are on one circuit, expect hot motors and transformers. In short, if you're serving up hash, everyone at the table tastes it!

Latest instrumentation

Power-line monitors range from simple beepers or lights that tell you when line voltages and/or currents are out of range, to printing versions that record values numerically and graphically. Two major manufacturers of such gear are Basic Measuring Instruments or BMI (335 Lakeside Drive, Foster City, CA 94404 , 415-570-5355), and Dranetz Technologies (1000 New Durham Road,

Edison, NJ 08818, 201-287-3680 or 800-DRAN-TEC).

BMI has three major instruments, the 2400 and 4800 PowerScopes, shown in Figs. 3 and 4, respectively, and the 3030 Power Demand Analyzer (not covered here). They combine oscilloscopes, strip-chart recorders, and RF interference meters in a single portable cabinet to capture transients varying from a few milliseconds to several hours in duration. Note the calculator keyboard, singleline display, and thermal strip-chart graphic printers on each.

Both versions of the PowerScope monitor sags, surges, impulses, waveshape faults, line-frequency variations, and high-frequency noise for single-phase or 3-phase AC or DC power lines, and have a built-in RS-232 bus. They can be combined

FIG. 5-THE DRANETZ SERIES 901 POWER HARMONIC ANALYZER, similar to a BMI 2400. In one printout for a instant in time, the device records line voltage, the current used, total power, power factor, harmonic power, fundamental power, and a breakdown of the power in the individual harmonic frequencies above the fundamental (in other words, its spectral content).

FIG. 6-THE DRANETZ SERIES 626G Universal Disturbance Analyzer, similar to a BMI 4800. This device has several add-on modules that increased the scope of the unit with event monitors.

FIG. 7-THE DRANETZ SERIES 656 Disturbance Waveform Analyzer. Note the built-in CRT, full keyboard, dual floppies, and thermal printer.
with the A-600 Parallel Processor to analyze total harmonic distortion and frequency spectral content (such as in the BMI 2460), and have a full range of accessories, including temperature and humidity sensors.
The BMI 4800 does everything the BMI 2400 does, but has more processing power. Whereas the BMI 2400 has two main and four environmental or probe channels, the BMI 4800 has up to four main channels and eight probe channels. Both models can be configured to take measurements every $1,3,6,12$, or 24 hours, and can do both high-resolution graphics, strip-charts, and text summaries, the sole exception being that the BMI 2400 can't do high-resolution graphics using the probe chan-nels-only the main ones.
The Dranetz Technologies gear is comparable in scope and complexity to that from BMI. Their Series 901 Power Harmonic Analyzer, shown in Fig. 5, is comparable to the BMI 2400, and the Series 626 Universal Disturbance Analyzer shown in Fig. 6 and DRAN-SCAN Multipoint Power Monitoring and Analysis System (not shown) are comparable to the BMI 4800.

The Dranetz Series 656 Disturbance Waveform Analyzer shown in Fig. 7 has a built-in CRT and full keyboard, two floppy disk drives, and internal thermal printer. Their Series 800 Electric Power/Demand Analyzers (not shown) are also available, and are similar to the BMI 3030. Both BMI and Dranetz also have extensive power analysis software for any external controllers used with their monitoring instruments.

Typical power-line disturbances
The graphs shown in Figs. 8-12 were made using BMI gear, and those shown in Figs. 13-16 were made using Dranetz gear; they're of similar format. The user selects thresholds and monitors power. Whenever an impulse, voltage sag, or other disturbance occurs, it's graphed as shown in Figs. 8 and 9 . Note that the sinusoidal peaks are somewhat flattened where current or voltage reaches a local maximum. If switching loads change a waveshape, that too is recorded. Fortunately, most disturbances have characteristic "signatures." Figure 10 shows a typical motor starting-voltage sag; the in-rush current drops the voltage to 84.5 volts RMS.

FIG. 8-BMI-GENERATED INITIAL WAVESHAPE REPORT for current for a circuit. Note that the current is drawn in pulses that could seriously compromise the operation of delicate instruments operating on the same or a nearby power line.

FIG. 9-VOLTAGE WAVEFORM IN A CIRCUIT with harmonics. The voltage sinusoid is distorted at positive and negative peaks, where current flow is maximum.

FIG. 10-TYPICAL MOTOR-START SIGNATURE. As the motor stabilizes, voltage returns to normal.

FIG. 11-IMPULSES DUE TO LOOSE WIRING. Sharp- edged dropouts on the sinusoid indicate that the problem is nearby.

FIG. 12-VOLTAGE SURGES CAUSED BY HIGH-FREQUENCY NOISE. Note the 10 -volt peaks that may ride through a power supply to damage memory and program chips in a computer.

Horiz. 18 msec/div Vert. 50 V/div
FIG. 13-A NORMAL POWER SINUSOID. The time was 11:33 P.M., when most heavy industrial machinery isn't powered. When the motor stabilizes, the voltage returns to near-normal; the low threshold was 105 volts. The potential was below 105 volts for 1.2 seconds, enough to make a computer lose data, shut down, and reboot. If you found that disturbance on a line with sensitive equipment, you'd
tvent H11 Un.H 1/10/07 13:4y:30. is

Horiz. 18 msec/div Vert. 58 V/div FIG. 14-HARMONIC DISTORTION. This graph was taken at 1:49 P.M. at the same site as that in Fig. 13.
move the motor to another circuit. A common problem in amateur radio shacks and utility communication gear are impulses due to loose wiring; a typical signature is shown in Fig. 11. The top part shows four impulses. The lower part shows how the voltage dropped out and returned a few times

FIG. 15-A POWER GLITCH. Just imagine what the added pulse would due to a counter circuit.

FIG. 16-A BRIEF POWER OUTAGE Just imagine what this would do to your PC's memory!
over a couple of cycles.
Note the sharp transitions, indicating loose wiring nearby. Had the disturbance occurred farther away, the transitions would've been slower, smoother, and less well-defined, as a result of impedance encountered as the impulse propagated. Powermonitor graphs sometimes need interpretation, but are fairly interesting, and expand your knowledge of powerline problems.

Figure 12 shows bursts of line-toneutral high-frequency noise, in this case RF interference, while transmitting the letter " K " in Morse code (dah-di-dah) from an amateur radio shack. High-frequency noise is common in such settings, but can also be caused by a CB radio, walkie-talkie, or taxi transmitter. You should check your own transmitter, if you have one, for both neutralization and shielding. The disturbance shown here is only 10 volts, but digital logic circuits work on 5 volts DC. If RF interference can induce 10 volts on a power line, such a level can wreak havoc with even otherwise well-shielded computers or instruments.

Some other waveforms, acquired from Dranetz gear, are shown in Figs.

Continued on page 52

MULTIMETERS OF TODAY CONTAIN A LOT more features than they used to, and perhaps the most useful feature is capacitor checking. It's true that less expensive meters will have only the usual voltage, resistance, and current capabilities but, for a little extra money, you can buy a meter that has capacitance-, frequency-, logic-, and transistor-checking functions. Of course, if you need to measure capacitance, the solution isn't to buy a new multimeter-especially if you already have a meter that you're particularly fond of. But converting your meter with our capacitance adapter may be just what you need.

The adapter converts the value of a capacitor to be tested into a precision analog voltage applied to the input terminals of the digital voltmeter. The adapter covers 5 decades ranging from 100 pF to $1 \mu \mathrm{~F}$, full scale.

The accuracy and stability of a typical 3-1/2 digit voltmeter is commonly $\pm 0.25 \%+1$ digit over a one year period. The accuracy of the adapter in combination with a digital voltmeter has been tested to be $\pm 0.4 \%$ over a 1400 -hour period. Warm-up is 1 digit (0.1%) or less within 30 seconds of turn-on. The thermal stability was found to be $-0.04 \% /{ }^{\circ} \mathrm{F}$.

Including a meter movement in the adapter case permits the device to be used as a stand-alone capacitance meter, but with reduced precision. Power for the adapter may be either
from the line or two 9 -volt batteries, which will provide about 50 hours of use.

Operation

The outstanding accuracy and stability of the circuit is due to the use of a CMOS version of the 555 timer IC. One is used as an astable pulse generator, that triggers another that is used as a pulse-width modulator. That initiates an R-C exponential rising voltage at J 1 and J 2 across the capacitor under test, C_{X}, as shown in the block
diagram of Fig. 1. The modulator output switches high upon receipt of the trigger pulse and switches low when the voltage on C_{X} reaches an internal reference voltage. See the timing diagrams in Fig. 2.

The average value of the pulse waveform in Fig. 2- a is a DC value such that the area A_{1} exactly equals the area A_{2}. The duty cycle of the output pulse from the pulse-width modulator is the ratio of the time it is positive to the period, T , or the total time between trigger pulses $\left(\mathrm{P}_{\mathrm{W}} / \mathrm{T}\right)$.

FIG. 1-BLOCK DIAGRAM of the capacitance adapter. It can turn any digital voltmeter into a precision capacitance meter.

FIG. 2-THE AVERAGE DC VALUE of the pulse waveform in a is such that the area A_{1} exactly equals the area A_{2}, or 2.4 volts. The average voltage equals the duty cycle times the maximum pulse voltage. The average value in b is 9.6 volts, which is four times larger than a because P_{w} is four times wider. For larger capacitors, P_{w} becomes wider than $6 \mu \mathrm{~s}$ (c), so it is necessary to increase T in order to generate a new duty cycle.

In the example shown in Fig. 2-a, the duty cycle is $1.2 \mu \mathrm{~s} / 6 \mu \mathrm{~s}=0.2$ or 20%. The average voltage equals the duty cycle times the maximum pulse voltage ($0.2 \times 12 \mathrm{~V}=2.4 \mathrm{VDC})$. The average value is extracted in the circuit by a low-pass filter. The larger the value of C_{X}, the wider the pulse (see Fig. 2-b). The average value in Fig. $2-b$ is 9.6 volts, which is four times larger than in 2-a because the pulse width $\left(\mathrm{P}_{\mathrm{w}}\right)$ is four times wider. For larger capacitors, P_{W} becomes wider than $6 \mu \mathrm{~s}$ (Fig. 2-c), so it is necessary to increase T in order to generate a new duty cycle.

As shown in the block diagram (Fig. 1), the range is switched by factors of 10 by connecting the trigger input of the pulse-width modulator to the output of a decade counter. That has the effect of lengthening the time between trigger pulses by a factor of 10. Even larger capacitors can be measured by switching the trigger to other decade-counter outputs. As an example, on the $1-\mu \mathrm{F}$ range, the time between trigger pulses is $6 \mu \mathrm{~s} \times(10 \times 10 \times 10 \times 10)=60,000 \mu \mathrm{~s}$ or 60 ms .

On a low range like 100 pF , the capacitance of the wires used to connect the adapter to C_{x}, will be measured and must be compensated for. A pair of 6-inch long leads an inch apart have a capacitance of about 6 pF which, if not compensated for, would cause a $10-\mathrm{pF}$ capacitor to read 16 $\mathrm{pF}-\mathrm{a} 60 \%$ error!

Circuit details

In the schematic of Fig. 3, all integrated circuits are low-power CMOS types. The TLC555 timer, IC1, is connected as an astable that generates narrow negative-going pulses. That's because Cl's discharge resistor, R 2 , is much smaller than R1, which sets the period (T) of the waveform.

The output pulse of ICl is further narrowed by the differentiator coupling, C3 and R4. It is fed to the trigger input of the pulse-width modulator, IC2, when the $100-\mathrm{pF}$ range (fullscale) is selected. The pulse-width output of IC2 varies with the actual capacitance of the unknown capacitor, C_{X}.

A low-pass filter for the pulse output of IC2 is formed by R6 and C6. That extracts the average of the pulse waveform which is a DC level that's proportional to the duty cycle of the waveform. Op-amp IC8 is connected as a voltage follower which gives no gain but transforms the high input resistance of the filter to a low value needed to drive the output circuits.

The DC output from IC8 is reduced and fed to the voltmeter terminals, J3 and J 4 , by a calibration voltage divider consisting of R10 and 10 -turn potentiometer R11. The optional $1-\mathrm{mA}$ meter (M1) is included as an analog display, and it can be calibrated via R8 and R9 to set the correct full-scale deflection.

The negative voltmeter terminal (J4) and the negative connection to M1 is floating with a voltage produced by a residual-C-null circuit. Resistor R12 and potentiometer R13 form a variable voltage divider from the + supply and provides an input to IC9 which, as a voltage follower, passes it to J 4 . When that voltage is increased, it reduces the voltage across J 3 and J 4 and also reduces M1's deflection.

The range is set by a dual-ganged 5 -position switch, S1. Four 4017 di-vide-by-ten counters (IC3-IC6) are connected in series; IC3 outputs only once for every 10 input pulses from IC1. That lengthens the period be-
tween trigger pulses for IC2 when the S1 is in the $1000-\mathrm{pF}$ position. The output pulse of IC4 occurs only once for every 10 input pulses from IC3, or after 100 pulses from ICl , and so on, for all of the counters. The counter outputs are differentiated (narrowed) by C4 and R7 and inverted by IC7 to form the required negative-going trigger pulses for IC2.

Another key to stability of the adapter's calibration is the voltage regulator, IC10, which must keep the supply voltage constant. Two 9 -volt batteries in series can be used to power the circuit until their voltages decrease to 7 volts (see Fig. 4-a). The power switch, S2, is part of the re-

PARTS LIST

All resistors are $1 / 4$-watt, 5%, unless otherwise indicated.
R1, R8, R10-4700 ohms
R2-220 ohms
R3- 10,000 ohms, 10 -turn potentiometer
R4, R7- 3300 ohms
R5- 33,000 ohms
R6-10 megohms
R9- 10,000 ohms, potentiometer
R11-1000 ohms, 10 -turn potentiometer
R12-39,000 ohms
R13- 10,000 ohms, potentiometer with on/off switch (S2)

Capacitors

C1-470 pF, ceramic
C2- $0.001 \mu \mathrm{~F}$, ceramic
C3-220 pF, ceramic
C4-100 pF, ceramic
C5, C7-0.1 $\mu \mathrm{F}$, ceramic
C6- $0.05 \mu \mathrm{~F}$, ceramic
C8, C9- $100 \mu \mathrm{~F}, 12$ volts, electrolytic
Semiconductors
IC1, IC2-TLC555 timer
IC3-IC6-4017 divide-by-ten counter
IC7-4011 quad 2-input NAND gate
IC8, IC9-3140 op-amp
IC10-LM7812 12-volt regulator
D1, D2-1N4148 diode
BR1-bridge rectifier, 50 mA or higher

Other components

M1-1-mA meter, optional
S1-double pole, 5 -position switch
S2-SPST switch (part of R13)
J1-J4-banana jack
B1, B2-9-volt battery, optional
PL1-AC plug and linecord
T1-12-volt, 50 mA (or higher) transformer
F1- $1 / 4$-amp fuse
Miscellaneous: two 9-volt-battery clips (optional), hardware, case, solder, etc.

FIG. 3-SCHEMATIC of the capacitance adapter. All IC's are of the CMOS type.

FIG. 4-THE ADAPTER CAN BE POWERED from two 9-volt batteries (a) or an AC supply (b).
sidual-C-null potentiometer, R13. If the $A C$ power supply is used in the design (Fig. 4-b), the transformer can
be a small one since the circuit requires only 20 mA -therefore, practically any bridge rectifier can be used for BR1.

Construction

It is recommended that you assemble the circuit on an etched experimenter's board designed for mounting IC's. Component placement is not critical with the exception of IC2; it should be located at the edge of the board and close to the front-panel terminals for C_{X}. Group the decade counters (IC3-IC6) in a line or cluster and locate the bypass capacitor, C5, in their midst.

Calibration

Before the adapter can make useful measurements, it must first be calibrated. All you have to do is calibrate the unit with one known-value or "standard" capacitor, and all other ranges will automatically be correctly adjusted. Of course, the calibration
will be only as accurate as the capacitor you use. If you must use a lowtolerance capacitor, measure it on a meter that you know to be accurate.

Potentiometer R3 should be adjusted so that a scope connected to pin 3 of ICl shows $6 \mu \mathrm{~s}$ between pulses. The goal is to set T so that if a capacitor marked with a full-scale value for any range (100 pF , for example) is connected as C_{X}, the duty cycle observed at pin 3 of IC2 will be about 80\%.

Assuming that you have an accurately known capacitor to use for calibration ($0.982 \mu \mathrm{~F}$, for example), connect it to J1 and J2 and, with a digital voltmeter set on the 2 -volt scale connected to J3 and J4, adjust R11 until the voltmeter reads 0.982 volts. If an analog meter is used, adjust R9 to give as close to 0.98 as possible. If you use smaller-value capacitors as your "standard," be sure to set the meters to zero with the recontinued on page 48

HAVE YOU EVER DRIVEN THROUGH FOG, mist, or light rain and been tempted to turn on your wipers-but didn't because of all the screeching and streaking they make when there's not enough water? One of the more useful features available on today's cars is delayed action and/or manual windshield wiper control. The delay is normally set using either a slide or rotary potentiometer, while the manual control is generally a momentary switch attached to one of the column levers, and flicked with the left hand while holding the steering wheel.

Many drivers with two-speed wiper motors-which are designed for heavy rain - simply don't use their wipers in a light drizzle to avoid the aforementioned screeching and streaking. If you are one of those drivers, you'll surely benefit from the wiper-delay described here. It mounts under the dash, doesn't hinder normal wiper operation, and features a variable $2-18$ second delay.

Circuit description

The wiper-delay schematic is shown in Fig. 1. With the ignition on, D1 maintains regulated +12 volts DC. When S1 closes, Cl bypasses transients and passes this +12 volts DC to divider R2-R3, producing a TTL high at pin 3 of ICl , a 4013 CMOS dual leading-edge triggered D-type flip-flop. Filter R4-C3 keeps ICl from triggering erroneously when the ignition is on. When S 1 is pressed, output QI (pin 1) of IC1 latches high, turning on Q 1 , which conducts via R5, turning on IC2; LED1 indicates power, and R6 sets the current. Since IC2 depends on Q1 for power, IC2 stays off until Q1 turns on.
The left half of IC2 is an astable, with its delay set by R7, R8, R11, and C4. The right half of IC2 is a monostable, with its pulse duration set by R9 and C5. With the values used, you might expect R11 to vary the delay from about $15-84$ seconds, with a 2.42 -second monostable pulse oper-
ating the wiper blades on each cycle. However, the actual delay will range between $2-18$ seconds, with a 1 -second monostable pulse on each cycle. That discrepancy stems from the fact that IC2 is being fed from the emitter of Q1, rather than directly from the regulated +12 -volt supply. Transistor Q1 acts as an active current source, making C4 charge and discharge faster than it ordinarily would.

The astable output (outi, or pin 5) is tied to TRIG2 (pin 8). When out2 (pin 9) goes high, Q2 is biased via R10 and current flows through RY1, with D2 dissipating back-EMF when RY1 shuts off. If RYI is an SPDT, then it's connected as in Fig. 1, whereas a DPDT relay is connected as in Fig. 2.

Construction

The foil pattern for the wiper-delay is shown in PC Service, and a source for the PC board is given in the Parts List. Whether you hardwire the wiper-delay or use the PC board, use a

FIG. 1-SCHEMATIC OF THE SOLID-STATE WIPER-DELAY. This is the configuration for older cars without manual pulse delay, using an SPDT wiper switch, where both wires from RY1 are in parallel with the wiper-switch terminals for the low wiper speed.

FIG. 2-FOR CARS WITH MANUAL WIPER CONTROL, use either an SPDT or DPDT switch for the wiper motor. For the SPDT switch, connect RY1 in parallel with the manual wiper control switch. For the DPDT switch, a DPDT relay is needed to operate the wiper-delay properly. Pole 1 goes between pole 1 of the switch and the pulse position.
suitable case that fits under the dash. The parts-placement diagram is shown in Fig. 3; S1 is a PC-board mounted, low-profile, SPST pushbutton ON/OFF keypad switch. The prototype is shown in Fig. 4. With the top of the case facing upwards, drill a hole on the left for S1, on the right for R11, and in the center for LED1. Use super glue to attach LEDI to a washer, then anchor the washer to the case.

After finishing the PC board, use double-sided tape to attach it and RY1 (upside down) behind R11. Drill a hole in the back panel for the four connecting wires, two for RY1 and

PARTS LIST

All resistors are $1 / 4$-watt, 5%, unless otherwise indicated.
R1- 47 ohms, $1 / 2$-watt
R2, R8- 1000 ohms
R3- 100,000 ohms
R4- 10,000 ohms
R5, R10-4700 ohms
R6-2200 ohms
R7, R9-220,000 ohms
R11-1 megohm, 1-turn, chassis mount potentiometer

Capacitors

$\mathrm{C} 1-0.1 \mu \mathrm{~F}$, ceramic disc C2- $0.001 \mu \mathrm{~F}$, ceramic disc $\mu \mathrm{F}$ C3- $2.2 \mu \mathrm{~F}, 25$ volts, electrolytic C4-100 $\mu \mathrm{F}, 25$ volts, electrolytic C5- $10 \mu \mathrm{~F}, 35$ volts, electrolytic

Semiconductors

D1-1N4742 12-volt Zener diode D2-1 N914 germanium diode LED1-green light-emitting diode

Q1-2N2222 NPN transistor
Q2-TIP31 NPN transistor
IC1-4013 dual D-type flip-flop
IC2-LM556 dual timer
Other components
S1-SPST N.O. momentary pushbutton switch
RY1-SPDT relay, 12 volts DC, 180 ohm, 65 mA (see text)

Miscellaneous

 $3.25-\times 2.125-\times 1.125-$ inch plastic case, $1.25-\times 1.5$-inch $4-40$ hardware (see text), wire (red, white, and black), plastic wire tie, solder, etc.NOTE: An etched and drilled PC board is available for $\$ 7.50$ and any return postage from R.A.H. Projects, P.O. Box 4715, Irvine, CA 92716-4715. California residents must add sales tax.
two for power. To install the case under the dash as in Fig. 5, use Velcro or double-sided tape. You can also drill completely through all four holes and mount it with four 1.5 -inch 4-40 screws. If you use either Velcro or tape, use the lid for the case, whereas for screws, you can discard the lid. Most newer cars have a nonconductive dash, preventing a short.
The prototype in Fig. 4 differs in one minor regard from the parts placement diagram shown in Fig. 3. Figure 3 shows R6 connected to the

PC board at both ends between LED1 and Q1 at upper right, while Fig. 4 shows R6 just to the right of C7 in the upper middle, with one end going to the PC board and the other end to the cathode of LED1. The PC board corresponding to Fig. 3, and which appears in PC Service, is correct.

Installation

Before installing the wiper-delay, get a schematic of your car's wiring harness from a service manual. Besides having wiring schematics, it's a

FIG. 3-PARTS-PLACEMENT DIAGRAM FOR THE SOLID-STATE wiper control.
helpful reference for repairs. For older cars with neither wiper delay or manual control, attach both wires from RY1 in parallel with the wiper switch terminals for the low wiper speed, as in Fig. 1.

If your car has both manual and delayed-action wiper control, then you obviously don't need to install the project described here, except either as a spare, or to experiment with how it works. Most cars that have manual wiper control will also have delay capability, but not necessarily all. If

FIG. 4-PROTOTYPE OF THE SOLIDSTATE WIPER CONTROL. Note that only one end of R6 goes into the PC board, while its other end goes to the cathode of LED1.
your car falls into that category, it'll generally have either an SPDT or DPDT switch for the wiper motor.

If it has an SPDT switch, connect RY1 in parallel with the manual pulse control switch. For the DPDT switch, a DPDT relay is needed to operate the wiper-delay properly, as in Fig. 2. Pole 1 goes between pole 1 of the switch and the pulse position. If the DPDT relay doesn't fit in the case you're using for your wiper-delay,

FIG. 5-THE INSTALLED SOLID-STATE WIPER CONTROL under the dash. Here, the holes for the lid were drilled out, and 4-40 screws were used to mount the case under the dash. You can also use the lid, and attach the case with Velcro or doublesided tape.
mount it under the dash in a remote location.

To operate, turn the ignition on and push S1; LED1 should light, and you should adjust R11 for the desired delay time.

In rain, use the wipers normally. Since most wipers operate at 2 Hz or faster, the pulse delay shouldn't affect normal operation. If you forget to turn the wiper delay off before shutting off the car, don't worry because it shuts off when you turn off the ignition, and won't turn on again until you start the car and press SI.

R-E

CAPACITANCE ADAPTER
 continued from page 45

sidual-C-null control before connecting the capacitor. That completes the calibration.
There are several ways to obtain a "standard" capacitor for calibration. One way is to have a paper, polyester film, or dipped mica capacitor measured on some other accurate capaci-tance-meter and use that value for the calibration. It is possible to buy polystyrene capacitors with $\pm 2 \%$ accuracy. Purchase at least 10 of the same kind and measure each one on the adapter, even though it hasn't been calibrated. Take a numerical average of all the readings and pick the capacitor which comes closest to the average

FIG. 5-THE UNIT IS ASSEMBLED on an etched experimenter's board designed for mounting IC's. IC2 should be located at the edge of the board and close to the front-panel terminals for C_{x}.
for the value of C_{X} will result in a reading greater than 1 volt, or 1.000 on the voltmeter. A range too high will give readings less than 0.1 volt, or 100 , which reduces the accuracy of the readout. For values of C_{X} less than $.01 \mu \mathrm{~F}$, first adjust the meter to zero with the residual-C-null control with the connecting wires in place but not attached to C_{X}-then connect C_{X}. Use the digital voltmeter's digits, not as volts, but as a multiplier times the
range-switch full-scale capacitance to arrive at the value of C_{X}.
A leaky capacitor will give an erroneous high reading. The effect of leakage produces greater errors in the measurement of small capacitors than for larger values. A 470 kilohm leakage in a $0.047-\mu \mathrm{F}$ capacitor produces a 6% error and a 12% error in a $220-\mathrm{pF}$ size. It is therefore good practice to use an ohmmeter to test C_{X} before measuring its capacitance.

FREQUENCY CONVERTERS ARE BASIC building blocks of RF equipment. You'll find them wherever there's a need to shift the RF carrier of a signal from one frequency to another, such as in any modern radio receiver.

Frequency conversion, or heterodyning, is the process of mixing an incoming signal with that of a Local Oscillator (LO), as shown in Fig. 1. Two signals result from mixing, their frequencies being the sum and difference of those of the originals. Thus, a $9-\mathrm{MHz}$ input and a $2-\mathrm{MHz}$ LO yield outputs of 7 and 11 MHz .

Building a frequency converter is easier now than it's ever been because of a new IC, the Signetics NE602. The NE602 contains an LO and dou-ble-balanced mixer in an 8-pin DIP, as shown in Fig. 2, a block diagram of the IC. The NE602 was originally designed for VHF receiver front ends, since the LO works up to 200 MHz , and the mixer to 500 MHz . However, it has plenty of uses at lower frequencies as well, and this article will explore them.

Circuit description

The NE602 uses a double-balanced mixer, producing only the sum and difference frequencies, not that of the RF input or LO. You can thus connect
the output of an NE602 directly to a receiver without overloading it. With a conventional mixer, you'd have to add a tuned LC circuit to eliminate the LO output. The NE602 LO is also well isolated from its RF input; you can thus connect a receiving antenna directly to the RF input terminals of the IC without worrying about radiating the LO signal back out through the antenna. This is important in directconversion receivers, where the LO frequency is so close to that of the input, that the two can't be isolated by a tuned LC circuit.

FIG. 1.-FREQUENCY CONVERSION PRODUCES outputs at the sum and difference of input and LO frequencies. In the case of the NE602, since it's double-balanced, both the input and LO signals are absent from the output.

The combination of the differential amplifier and mixer in the NE602 is known as a Gilbert cell. The mixer has on-board voltage regulation, and draws $2.5-3 \mathrm{~mA}$ at $4.5-8$ volts. For best performance, bypass the power supply with a $0.04-\mu \mathrm{F}$ capacitor as close to the IC as possible. The absolute maximum supply voltage is 9.0 volts, but a 9 -volt battery often exceeds that, and 9 -volt wall transformers often deliver as much as 11 volts. For safety, use 1000-ohm dropping resistor R1 as shown in Fig. 3; using a Zener diode, you can use automotive power supplies up to 18 volts.

The RF input and mixer output can be either single-ended or balanced as shown in Figs. 4 and 5. Using a balanced input reduces harmonics, while a balanced output gives better suppression of the input RF and LO signals. However, even in the simplest single-ended configuration, the NE602 gives much better performance than the one-transistor mixer commonly found in receivers.

The input and output impedances of the NE602 are about 1.5 K at low frequencies, and decrease with increasing frequency. The input signal should be weak to prevent harmonics; the third-order intercept point is for a -15 dBm input, but the recommended
level is -25 dBm or below. That corresponds to 68.87 millivolts into 1.5 K if you use direct coupling, or 12.82 millivolts into 52 ohms if you use impedance matching. The NE602 works well with microvolt-level signals from antennas.

The input signal is amplified prior to mixing; the voltage gain is about 10. Thus, a receiving converter built with the NE602 can increase a receiver's sensitivity. The NE602 LO is a transistor with connections to its base and emitter, with biasing han-

FIG. 2.-NE602 EQUIVALENT CIRCUIT WITH PINOUTS. The combination of differential amplifier Q6-Q7 and mixers Q2-Q3 and Q4-Q5 is called a Gilbert cell.

FIG. 3.-NE602 POWER SUPPLY OPTIONS. Here, (a)-(c) show an RC-filter used as both current limiter (R1) and integrator (C1), as well as for isolation. In (a), $+4.5-8.0$ volts DC is the normal operating range of the NE602. In (b), R1 drops voltage, and is used since a +9 volt battery can go higher, and a +9 -volt wall supply can produce up to 11 volts. In (c), an +8 -18-volt DC supply is regulated using 8.2 -volt Zener D1.

FIG. 4.-MIXER RF INPUT CONFIGURATIONS. Here, (a)-(c) are for single-ended coupling, (a) being for no impedance matching, (b) for inductive matching, (c) for capacitive matching. By contrast, (d) is for a balanced input with reduced second harmonic.
dled on the chip. That makes it easy to build many different oscillator types with few external components.

Figure 6 shows some of the main versions; there are many others. The NE602 can be used as an oscillator without the mixer. One way is to sample the LO output at pin 7; a better way is to unbalance the mixer and use it to amplify the LO signal, as shown in Fig. 7. The unbalance is created by a 10 K resistor from one input pin to ground, which changes the bias voltage slightly. The output level of such an oscillator is about 0.5 VAC P-P.

Basic crystal oscillator

Many frequency converters are crystal-controlled; Fig. 8 shows the most basic version. The low side of XTAL1 and C2 can be returned either to ground or to V_{CC}; the latter is more compact, because pins 6 and 7 are adjacent to V_{CC} (pin 8). The values of Cl and C 2 are important. If Cl is too large, or C2 is too small, there's too much feedback and the oscillator waveform is distorted, with a strong third harmonic. If Cl is too small or C 2 is too large, oscillation doesn't occur.
Some suggested values for Cl and C 2 are shown in Fig. 6 along with formulae for calculating them. At high frequencies, Cl can be somewhat than the value shown because stray capacitance does some of the work. The values shown are for the best sinusoid. If you want to be sure that a relatively inactive crystal will oscillate and don't mind harmonics, make Cl three times larger. The third harmonic from such a circuit could be used for VHF. There's also a lower frequency limit; the unmodified circuit will oscillate with a $455-\mathrm{kHz}$ ceramic resonator, but not a $100-\mathrm{kHz}$ crystal. Adding 22 K from pin 7 to ground will increase the oscillator gain, and improve your chances with low-frequency crystals.

Precise frequency control

A crystal won't necessarily oscillate at its exact rated frequency. There are two kinds, series- and parallelresonant. They're electrically identical , the only difference being that se-ries-resonant crystals are cut to an exact frequency, whereas parallel-resonant crystals are cut slightly longer, so as to resonate independently slightly below their rated frequency. For that reason, parallel-resonant

FIG. 5.-OUTPUT CONFIGURATIONS. Here, (a) is the simplest single-ended approach without impedance matching, (b) is a single-ended approach for a tuned LC circuit load, and (c) is for a balanced approach for better suppression of input and LO signals.

FIG. 6.-BASIC NE602 OSCILLATOR CIRCUITS; (a) is Colpitts crystal-controlled, (b) is Colpitts LC-tank-controlled, (c) is Hartley LC-tank-controlled, and (d) is controlled by an external oscillator. Many other configurations are possible.

FIG. 7.-THIS IS A GENERAL CONFIGURATION for an NE602. To make an LO signal appear at оut A (pin 4) and out B (pin $5), \operatorname{IN} A(\operatorname{pin} 1)$ is grounded through R1.
crystals need external capacitors (usually 32 pF) to increase their actual frequency of oscillation to their rated value. In Fig. 8, Cl is this capacitor, but it's usually larger than 32 pF and has less effect than the one depicted here.

Thus, at 10 MHz , parallel-resonant crystals oscillate about 100 parts per million (ppm) below their rated frequency, while series crystals resonate about 300 ppm above. A parallel-resonant crystal can be pulled up to its rated frequency using a small variable capacitor in series with it, as in Fig. 9, letting you adjust the oscillator as desired. However, even without this capacitor, the frequency error won't be more than $300 \mathrm{ppm}(0.03 \%)$.

Overtone crystal oscillator

Above 20 MHz , crystals oscillate in overtone mode, and the oscillator

FIG. 8.-FUNDAMENTAL COLPITTS CRYSTAL OSCILLATOR. Note that the juncture of XTAL1 and C2 can go to either ground or V_{cc}.
needs a tuned LC circuit to select the desired harmonic. For example, a $27-$ MHz third-harmonic crystal can resonate at 9 MHz (fundamental) or 45 MHz (fifth harmonic). The NE602

FIG.9.-A VARIATION ON FIG. 8, including C3 to adjust the frequency of XTAL1 (par-allel-resonant), bringing it up to its rated value.
data sheet recommends a modified Colpitts oscillator for overtone crystals, but the Butler oscillator in Fig. 10 gives much better results. Its crystal is series-resonant, and L_{t} and Cl are tuned to the crystal frequency.

This circuit is reliable to at least 60 MHz . Just adjust L_{t} and Cl until oscillation occurs. By adjusting this tuned LC circuit, you can trim the frequency by about 50 ppm ; for greater variation, use a parallel-resonant crystal in series with a variable capacitor for adjustments.

FIG. 10.-BUTLER OVERTONE CRYSTAL OSCILLATOR, with C1 as trimmer. Here: $\mathrm{L} 1 \approx 1300 \mu \mathrm{H}$, and both L1 and C1 have to be tuned to the frequency of XTAL1.

Frequency doubler

Figure 11 shows a crystal-controlled frequency doubler with no tuned LC circuits. That circuit is useful in the $20-40 \mathrm{MHz}$ range, but the same method could be used with overtone crystal oscillators for even higher output frequencies.

The doubling is achieved by feeding the LO from pin 7 into the mixer. The output is $2 \times \mathrm{f}$ (where f is the oscillator fundamental frequency), while the difference frequency is zero (or DC), disappearing due to capacitive coupling.

The output still contains some energy at the LO frequency and isn't pure, but is good enough for hobbyist purposes. A tuned LC circuit can easily provide pure output. Of the oscillators shown here, this is the only one that can't be used with the mixer, because one mixer input is occupied (although you could feed a signal to the other mixer input).

Figure 12 shows a Colpitts LC oscillator using coils and capacitors. Here, L_{t} forms a resonant circuit with C 1 and C 2 in series, plus C 4 in parallel. Also, C3 blocks DC from pin 6 to V_{CC} or ground; it has little effect on the resonant frequency. Figure 12 also gives formulas for component values. At very high frequencies, a 22 K resistor from pin 7 to ground (not V_{CC}) will change the bias point and increase gain.

FIG. 11.-THIS FREQUENCY DOUBLER PRODUCES a sine wave at twice the frequency OF XTAL1. Note that output is taken only from out B (pin 5), while OUT A (pin 4) is left open.

FIG. 12.-COLPITTS LC OSCILLATOR. Here: $\mathrm{L} 1 \approx 7 \mu \mathrm{H} / \mathrm{f}, \mathrm{C} 1 \approx \mathrm{C} 2 \approx \mathrm{C} 3 \approx 2400 \mathrm{pF} / \mathrm{f}$, where f is in MHz.

FIG. 13.-THIS CONVERTER DOWN-CONVERTS LONGWAVE signals from 350-500 kHz up to $4.35-4.5 \mathrm{MHz}$, enabling them to be received via a shortwave receiver plugged into J1.

Longwave receiver converter

Figure 13 shows a frequency converter front end for a shortwave receiver to receive longwave signals ($350-500 \mathrm{kHz}$). It mixes the incoming signal with the $4-\mathrm{MHz}$ signal from the LO. For example, 400 kHz incoming produces 4.4 and 3.6 MHz . The shortwave receiver will receive the signal if tuned to either frequency. The input has a tuned LC circuit to prevent spurious response.

If the receiver is set to 4.4 MHz , then without the tuned LC circuit you'd listen to 400 kHz and 8.4 MHz , because each gives a $4.4-\mathrm{MHz}$ output when mixed with the LO. The tuned

LC circuit at the input selects one and rejects the other. This circuit was attached to a shortwave receiver, and immediately received several longwave navigational beacons in nearby states. A long wire antenna works, but loops pick up less noise because they are directional.

Direct-conversion receiver

A frequency converter can shift frequencies up or down. However, if you shift an RF signal down to audio, you get an audio signal. This is called direct-conversion reception, and can demodulate Single-Side b and (SSB) and Morse code Continuous-Wave (CW) transmissions. It demodulates AM, but there's a whine if the tuning isn't perfect.

Figure 14 shows such a direct-conversion receiver for the 40 meter band (7.5 MHz), that was able to receive several amateur radio stations using a 3 -foot whip antenna. The design could be refined; tuning would be easier with a variable capacitor instead of an adjustable coil.

FIG. 14.-DIRECT-CONVERSION RECEIVER for the $40-\mathrm{meter}(7-\mathrm{MHz}$) amateur radio band, where CW is directly downconverted to audio.

Conclusion

There are basically three RF circuit types-amplifiers, oscillators, and frequency converters. The NE602 makes frequency conversion easier than ever. Both it and related IC's will eventually become basic building blocks of RF design. This article has only scratched the surface of the possibilities for the NE602. In an IF section, it makes a good product detector. By mixing audio with RF, it can act as an AM or DSB modulator. By mixing audio with audio, the

NE602 can be the heart of an ultrasonic listener (by down-converting high-frequency audio) or a speech scrambler to add security to telephone conversatins.

You can get NE602's at \$2.00 each, plus $\$ 2.50$ per order postage and handling per order, from the Small Parts Center, 6818 Meese Drive, Lansing, MI 48911, (517) 882-6447; there's no minimum order. They're are also available from Arrow Electronics, Schweber Electronics, and many other Signetics distributors, with $\$ 25.00$ typical minimum orders. Be sure to specify whether you want the NE602N (8-pin DIP) or NE602D (surface mount package).

You also may prefer to order the NE602A, which will be replacing the NE602 imminently; it has somewhat improved intercept characteristics, resulting in less harmonic generation and intermodulation distortion. To specify the desired package type, you'd refer to the NE602AN or NE602AD. We would like to thank Phil Anzalone, Ali Fotowat, and Craig Hirtz of Signetics for their invaluable assistance in preparing this article.

R-E

POWER LINE GLITCHES

continued from page 42
13-16. Figure 13 shows a normal power sinusoid, Fig. 14 shows harmonic distortion, Fig. 15 shows a brief glitch, and Fig. 16 shows a brief power outage.

Conclusion

Those graphs shown in Figs. 8-16 show only a few of many possible disturbances. Power glitches are common and readily identified. Most are easily fixed, the culprit often being poor wiring, bad grounding, or load switching-all can be corrected cheaply. The most common, practical countermeasure is to install a separate power line from the circuit-breaker box involved to the device being interfered with, like a PC.

Power monitors make identification easy, but they're generally too expensive, and would be needed too infrequently, to warrant purchase by the average hobbyist. They can, however, be rented for short periods, on an as-needed basis, letting you derive the benefits of their technology without making a major investment. R-E

AUDIO AMPLIFIERS IC's
 A look at practical IC audiopower amplifiers in automotive applications.

RAY MARSTON

LAST MONTH WE DISCUSSED SEVERAL practical audio-power amplifier IC's. This month, we continue with our survey, focusing on automotive audio applications. Among the devices we'll examine are the LM390, LM383, TDA2002, and the LM377/8/9 series.

The LM390 is a 1-watt audio-power amplifier IC that's optimized for a power supply $\left(\mathrm{V}_{\mathrm{CC}}\right)$ of $+6-9$-volts (+10 volts maximum). Using a +6 volt power supply, the LM390 can deliver 1 watt into a 4 -ohm speaker. It's housed in a 14-pin Dual-Inline Package (DIP), and features an internal heat sink that's connected on one side to pins 3,4 , and 5 , and on the other side to pins 10,11 , and 12 .

Figure 1 shows the internal circuit and pinout connections of the LM390. You may notice that it's similar to the LM388 discussed last month, but the output stage has been optimized for maximum output swing. The inputs are ground-referenced, and the output automatically self-biases to a quiescent value of $\mathrm{V}_{\mathrm{CC}} / 2$ when the output stage is DCbiased via external resistors between pins 9 and 14 .

The overall voltage gain of the LM390 is internally set at 20, but can be increased to 200 using a shunt capacitor between pins 2 and 6 . Figures $2-5$ show some applications using the LM390. Figure 2 shows the LM390 as a 1 -watt amplifier driving a 4 -ohm speaker from a +6 -volt power supply. The output stage is DC biased by R1

FIG. 1-INTERNAL CIRCUIT AND PIN CONNECTIONS of the LM390 1-watt battery operated audio-power amplifier.

FIG. 2-AN LM390 USED AS A1-WATT AMPLIFIER. The overall internal voltage gain is 200 with C5, and 20 without.
and R 2 in series between V_{CC} and pin 9 . The R1-R2 junction is bootstrapped from the output via C 2 , so that the AC impedance of the R2-C2 combination is far greater than the DC resistance of R2 alone.

Figure 3 shows an alternative configuration for the LM390. Here, DC is fed to pin 9 via the speaker and R1, but here, R1 is bootstrapped via C2, achieving performance similar to that of the version shown in Fig. 2, but with a savings of two parts. Figure 4 shows two LM390's in a bridge amplifier, delivering 2.5 watts into a 4 -
ohm speaker from a +6 -volt power supply. Also, R6 balances the LM390 quiescent outputs, minimizing quiescent current.

Figure 5 shows a single LM390 used in an intercom. Here, R4-C5 provides a gain of: $\mathrm{A}_{\mathrm{V}}=15 \mathrm{~K} / 51$ ohms ≈ 300. The LM390 has poor rip-ple-rejection, which can be overcome by adding a $10 \mu \mathrm{~F}$ or larger capacitor from pin 1 to ground. Each of the amplifier configurations shown in Figs. 2-5 have a resistor and capacitor in series from the output of the LM930 to ground, forming a Zobel network which enhances circuit sta-

FIG. 3-AN LM390 USED AS A 1-WATT AMPLIFIER with $A_{V}=20$ and speaker returned to the +6 -volt power supply.

FIG. 4-TWO LM390'S USED AS A BRIDGE AMPLIFIER delivering 2.5 watts into a 4 -ohm speaker.

FIG. 5-AN LM390 USED IN AN INTERCOM. Note how S1-a and S1-b interchange speaker and microphone.

TABLE 1-APPROXIMATE PERFORMANCE CHARACTERISTICS OF THE LM377/8/9 AMPLIFIERS

LM2002 (TDA2002) circuits

The LM2002 is an 8 -watt auto-motive-audio amplifier IC, equivalent to the TDA2002, and housed in a 5pin TO-220 package. It can deliver 5.2 watts into a 4 -ohm speaker, or 8 watts into a 2 -ohm speaker. It uses a $+5-20$-volt power supply, can deliver peak output currents of 3.5 amps , and has a current-limited and ther-mally-protected output. It's similar to the LM383, but has a slightly less efficient output, with consequent lower output power into a given load.

Figure 7 shows an application of an LM2002 used in a 5.2-watt auto-motive-audio amplifier, with a closed-loop gain of 100 set by R1, R2, and C3. Here, R3 and C4 ensure highfrequency stability, and have to be close to pins 3 and 4. Two LM2002's or TDA2002's can be used to form a 16 -watt automotive-audio bridge amplifier.

LM377/8/9 circuits

National Semiconductor has a range of dual power-amplifier IC's for mono, stereo, and bridge amplifier applications. The best known are the LM377 2-watt, the LM378 4-watt, and the LM379 6 -watt versions. Figure 8 shows the outlines of their DIP's with pinouts, and Table 1 their approximate performance characteristics. They all have highimpedance differential input stages and fully-protected output stages, but differ in voltage, power, and packages. The input stages are DC-biased to $\mathrm{V}_{\mathrm{CC}} / 2$, and a bias generator is built into the IC.

Figure 9 shows a general inverting stereo amplifier using a single-ended power supply. The IC depicted can be any of those in the accompanying table, which lists typical performance. The amplifiers in the IC are biased by connecting each non-inverting input to the bias terminal (pin 1 on the LM377 or LM378, or pin 14 on the LM379), and the closed-loop gain of each is about 50 ($\mathrm{R} 2 / \mathrm{R} 1$ or $\mathrm{R} 4 / \mathrm{R} 3$). Figure 10 shows how the above circuit can be used in non-inverting mode using a single-ended power supply, with the gain of each half set at 50 (R4/R3 or R6/R5), and the non-inverting input terminals of the amplifiers biased internally.

It is possible to power the circuit of Fig. 10 by using a split power supply. In that case, the internal bias generator is ignored, and the non-inverting

LM377 DUAL 2-WATT AMPLIFIER LM378 DUAL 4-WATT AMPLIFIER

LM379 DUAL 6-WATT AMPLIFIER
b

FIG. 8-OUTLINES AND PIN NOTATIONS OF THE popular LM377/8/9 dual amplifiers.

FIG. 9-SIMPLE INVERTING STEREO AMPLIFIER using the LM377/8/9 dual amplifiers.

FIG. 10-NON-INVERTING STEREO AMPLIFIER USING a single-ended power supply.
input of each amplifier is DC-coupled to the ground half-supply point via R6 and R7.
Figure 11 illustrates how to boost the available power of one half of an LM378 to 15 watts, while generating only 0.05\% Total Harmonic Distortion (THD) at 10 watts. At very low power, Q1 and Q2 are inoperative, and power is fed directly to the speaker via R2.

At high power, Q1 and Q2 form a complementary emitter follower, providing most of the power to the speaker. Also, R2 and Q1-Q2 are wired into the negative feedback loop, generating negligible cross-over distortion. Figure 12 shows an application of both halves of an LM377/8/9 in a mono bridge amplifier feeding high power into a DC-coupled speaker.

FIG. 11-ONE CHANNEL OF A 15-WATTS-PER-CHANNEL stereo amplifier using a singleended power supply.

FIG. 12-BRIDGE AMPLIFIER CIRCUIT USING dual-amplifier IC's.

The LM1877 IC

The LM1877 dual 2-watt power amplifier IC is an improved pin-forpin replacement for the LM377, to be used in place of the LM1877 whenever possible. It provides improved
performance in terms of very low cross-over distortion, very high input impedance, and high slew rate, but has slightly worse ripple rejection and higher quiescent current than the LM377.

Assorted amps

The remainder of this discussion will give brief descriptions of a few popular audio-power amplifier IC's, with applications for each. The TBA810S can deliver several watts for automotive audio applications. It features protection against power supply polarity inversion and high-voltage transients.

Figure 13 shows an application that uses a TBA8105 as a 7-watt auto-motive-audio amplifier; the gain is determined by R2, while R1 performs output biasing and is bootstrapped via C8, and R3-C7 functions as a Zobel network.

The TBA820M is a low-power amplifier IC capable of delivering a few hundred milliwatts into a $4-16$-ohm speaker, and is housed in an 8 -pin DIP. It can run on as little as +3 volts, and has low quiescent current, good ripple rejection, and low cross-over distortion.

Figure 14 shows an application of a TBA820M as a low-power audio amplifier, where the gain is determined by R2, and R3-C6 is a Zobel network. It can run on a +16 -volt single-ended power supply using a $16-$ ohm speaker, a +12 -volt power supply using an 8 ohm speaker, or a +9 -volt power supply using a 4 -ohm speaker.

The TDS2005M is a 20 -watt automotive audio-power booster IC housed in an 11-pin package, fully output short-protected. It houses two internal bridge-connected power amplifiers, providing high power into a 2 -ohm speaker from a +14.4 -volt power supply. Figure 15 shows an application as a 20 -watt automotive au-dio-power booster; all electrolytic capacitors should be rated at a minimum of +25 volts.

The TDA2006 and TDA2030 are high-quality amplifiers capable of being used using either split or singleended power supplies, and generating less than 0.1% distortion when delivering 8 watts into a 4 -ohm speaker. They're housed in a 5 -pin TO-220 package with an insulated heatsink bolted directly to an external heat sink with no insulating washer.

Figure 16 shows the package and pin connections for both the TDA2006 and TDA2030, and Figure 17 shows an application that uses a TDA2006 in an 8 -watt amplifier powered by a split power supply, with the non-inverting input tied to ground via R1. Here, high-frequency roll-off

FIG. 14-A TBA820M USED AS A LOW-POWER audio amplifier.
use up to +36 volts in the case of a single-ended power supply, and ± 18 volts in the case of a split power supply. Using a +28 -volt single-ended power supply, it delivers 12 watts into a 4-ohm speaker or 8 watts into an 8ohm speaker, with a THD of 0.05% at 1 kHz and 7 watts out.

Figure 18 shows an application of the TDA2030 as a 15 -watt amplifier using a +30 -volt single-ended power supply and 4 -ohm speaker, with 30 dB gain.

The performance that you can obtain from the circuits presented can be quite impressive. While they form an excellent starting point for an original amplifier design, they can also be used in other projects. For example, with a hand-full of parts and a little bit

NOTE: -ALL CAPACITORS RATED AT 25 VWK, MINIMUM

FIG. 15-A TDA2005M USED AS A 20WATT AUTOMOTIVE audio-power booster.

FIG. 16-THE TO-220 OUTLINE AND PIN CONNECTIONS of the TDA2006 and TDA2030.

FIG. 17-A TDA2006 USED AS AN 8-WATT AMPLIFIER using a split power supply.

FIG. 18-A TDA2030 USED AS A 15-WATT AMPLIFIER using a single-ended power supply.
is achieved via R4-C5, and the gain is set by R3/R2, or 22. Diode D1 and D2 protect the output against damage from back-EMF from the speaker, and R5 and C6 form a Zobel network.

The TDA2030 is an upgraded TDA2006 housed in a 5 -pin TO-220 package with insulated heat tab. It can
of work, you can transform the output of your personal portable stereo into car-filling sound.

If you have an older car stereo (and who doesn't?) with blown final output amplifiers, you might find that many of the circuits we presented will fill the bill nicely.

R-E

Rates: Ads are $21 / 4^{\prime \prime} \times 27 / 8^{\prime \prime}$. One insertion $\$ 950$. Six insertions $\$ 925$. each. Twelve insertions $\$ 895$. each. Closing date same as regular rate card. Send order with remittance to Engineering Admart, Radio Electronics Magazine, 500-B Bi-County Blvd., Farmingdale, NY 11735. Direct telephone inquiries to Arline Fishman, area code-516-293-3000. Only 100\% Engineering ads are accepted for this Admart.

The MCPM-1 system allows the IBM PC and compatibles to be used as a complete development system for the Motorola MC68705P3, P5, U3, U5, R3 and R5 single chip microcomputers. The system includes a cross assembler program. a simulator/debugger program and a programming board that connects to a senal port Price- $\$ 449.00$ VISA and MASTERCARD accepted
the engineers collaborative. inc.

RR\#3, BOX 8C Barton, Vermont 05822 Phone (802) 525-3458 FAX (802) 525-3451

CIRCLE 191 ON FREE INFORMATION CARD

FCC LICENSE PREPARATION

The FCC has revised and updated the commercial license exam. The NEW EXAM covers updated marine and aviation rules and regulations, transistor and digital circuitry. THE GENERAL RADIOTELEPHONE OPERATOR LICENSE - STUDY GUIDE contains vital information. VIDEO SEMINAR KITS ARE NOW AVAILABLE.

WPT PUBLICATION 979 Young Street, Suite A Woodburn, Oregon 97071 Phone (503) 981-5159

Surface Mount Chip Component
 10% value from 1 pf to $33 \mu \mathrm{f}$. CR-1 Resistor Kit contains 1540 pieces; 10 ea. of every 5% value from 10 . to 10 megh . Sizes are 0805 and 1206. Each kit is ONLY $\$ 49.95$ and available for Immediate One Day Delivery

Order by toll-free phone, FAX, or mail. We accept VISA, MC, AMEX, COD, or Pre-paid orders. Company P.O.s accepted with approved credit. Call for free detailed brochure.

COMMUNICATIONS SPECIALISTS, INC 426 West Taft Ave. - Orange, CA 92665-4296 Local (714) 998-3021 • FAX (714) 974-3420
Entire USA 1-800-854-0547
CIRCLE 187 ON FREE INFORMATION CARD

Service

FOIL PATTERN for the windshield-wiper

Hardware Hacker

Alternate-energy resources

WE SEEM TO HAVE A REALLY MIXED BAG of outstanding goodies this month, so let's just jump right in. As usual, please note that all of our referenced sources appear in either the alternate-energy resource sidebar or in the names and numbers box.

Harardous materials

I've gotten several calls asking how to dispose of any spent printed-circuit etchant. Since I'm part of the Haz-Mat team at our local fire department, I thought we'd look at the big picture first. Back to square one.

We can define a hazardous material as any substance that is out to do you in. It might burn, explode, be chemically reactive, be biologically active, poisonous, radioactive, or might interact violently with water or air.

As a hardware hacker, you probably expose yourself to hundreds of hazardous materials. Knowing ahead of time what these nasties are and what they an do to you is common sense.

Most industrial chemicals and by-products have to provide a Materials Safety Data Sheet. Obviously, you'll want to read and collect them. If you have any employees, you are required by law to make any relevant sheets available to them on request.

Unfortunately, most MSDS listings do a total whitewash job and dwell on stupid trivia. For instance, the sheet on Kapton films goes out of its way to tell you that these films are slippery and you can trip on them if you leave them
on the floor. But they make no obvious mention that Kapton turns. from an insulator into a conductor above a certain temperature, totally thrashing any computer or electronic system it is involved with. Always watch for understatement, weasel words, and any misdirection when you are reading the sheets.

One of the best Haz-Mat references is the "yellow" book from DOT, otherwise known as the Emergency Response Guidebook. It lists most industrial chemicals and tells competent professionals how to deal with them under emergency conditions. Single copies are obtainable at no charge on request.

LMA-117
Melts at 117 Degrees F. Contracts slightly on cooling. About $\$ 7.50$ per ounce.

LMA-158
Melts at 158 Degrees F. Expands slightly on cooling, About $\$ 1.35$ per ounce.

LMA-255

Melts at 255 Degrees F. Expands slightly on cooling. About $\$ 1.00$ per ounce.

LMA-281

Melts at 281 Degrees F. Expands slightly on cooling. About $\$ 2.20$ per ounce.

FIG. 1-SOME LOW-TEMPERATURE ALLOYS you can get through Small Parts. Two of these can be melted and cast with boiling water. What hacker uses can you think of?

Organic Vapor Detectors Low Melting Point Alloys Alternate Energy Resources Ultraviolet Flame Detector Five Band Equalizer Circuit

DON LANCASTER

A second resource is the 24 hour emergency telephone number from Chemtrec at (800) 424-9300. It's a free chemical-industry service that can instantly place you in contact with experts on any hazardous material. But note that it's an emergency response number, sort of a nationwide 911. Do not use it for idle chat.

An interesting free trade journal that deals with hazardous materials is Pollution Equipment News. That one also exposes you to some real pneumatic and electronic gems that you might not otherwise see.

Naturally, any genuine Haz-Mat incident should be handled by the professionals, usually contacted by your local 911 number. One of the hardest things for the pros to learn is that their preconditioned "Save my Baby!" super-aggressive initial fire-attack strategy is most often dead wrong in a Haz-Mat incident. Doing nothing at all is usually far better then becoming part of the problem.

The quantity of the material and the way you store it will also make a big difference. Common sense is an obvious factor here.

In the case of ammonium-persulfate printed-circuit etchant, storage of the dry etchant in small and sealed plastic containers is recommended. Tupperware works quite well. Some ammonium-persulfate etchants also include a highly poisonous mercury activator. So never work in your kitchen, always be in a well-ventilated area, and always wear safety

FIG. 2-AN ULTRA-VIOLET FLAME SENSOR. The circuit is basically a neon lamp relaxation oscillator. Its frequency is a few counts per minute in the absence of a flame, and a mid to high audio frequency with a flame present.

Figure 1 sums up their properties.
The melting points for those alloys are set to 117 degrees Fahrenheit, 158 degrees, 255 degrees, and 281 degrees. They are available in quarter- and one-pound sizes, and range in price from $\$ 28$ to $\$ 78$ per pound. Unfortunately, the 117 degree one is by far the most expensive, since it is around one-fifth irridium, a precious metal.

Those two alloys with the lowest melting point can easily be cast from a "crucible" placed inside boiling water on your stove. Plaster or silicon-rubber molds should work just fine.

While you could, in theory, mix
glasses and plastic gloves.
Note that ammonium persulfate is an oxidizer. If you use a wooden spoon to stir it, and come back a week or two later, the chances are that you'll have nothing but a burned-off spoon handle left. Do avoid all contacts between ammonium persulfate and organic materials.

To dispose of the etchant, contact your local environmental con-

DON LANCASTER	
HANDS-ON BOOKS	
Hardware Hacker Reprints II	24.50
Ask The Guru Reprints I or II	24.50
CMOS Cookbook	18.50
TTL Cookbook	16.50
Active Filter Cookbook	15.50
Micro Cookbook vol I or II	16.50
Enhancing your Apple I or II	17.50
AppleWriter Cookbook	19.50
Apple Assembly Cookbook	21.50
Incredible Secret Money Machine	10.50
LaserWriter Reference (Apple)	19.50
PostScript Cookbook (Adobe)	16.50
PostScript Ref. Man. (Adobe)	22.50
PostScript Prog. Design (Adobe)	22.50
Real World Postscript (Roth)	22.50
UNLOCKED SOFTWARE	
LaserWriter Secrets (lle/Mac/PC)	29.50
PostScript Show \& Tell	39.50
Intro to PostScript VHS Video	39.50
PostScript Beginner Stuff	39.50
PostScript Perspective Draw	39.50
PostScript Technical Illustrations	39.50
PostScript Work in Progress	39.50
PostScript BBS stuff	19.50
Absolute Reset lle \& lic	19.50
AppleWriter/Laserwriter Utilities	49.50
Enhance I or II Companion Disk	19.50
AppleWriter CB or Assy CB Disk	24.50
FREE VOICE HELPLINE	SA/MC
SYNERGETICS	
Box 809-RE Thatcher, AZ 85552 (602) 428-4073	

FIG. 3-A 5-BAND GRAPHIC EQUALIZER that uses a single Samsung integrated circuit. A pair of chips can be used for ten bands.
servation agency and ask them for the requirements in your area.

Low-temperature alloys

I just got a new copy of Catalog \#12 from Small Parts. As we've seen a time or two in the past, those folks are a great source for everything your hardware store never heard of, besides custom cutting small quantities of metal and plastics for you.

Several of their more interesting products include a series of four low-temperature melting alloys.
the alloys together to get different melting points, it pays to know what you are doing. Otherwise, instead of a free flowing eutetic liquid, you might end up with so much dross. Metallurgy and all.

I can think of all sorts of unusual and off-the-wall uses for them, but why don't you tell me instead? As our contest this month, just dream up a unique application for a low melting point alloy. There'll be all the usual Incredible Secret Money Machine book prizes, along with an all-expense paid (FOB Thatcher,

NAMES AND NUMBERS

Chemtrec
Use this number ONLY for a Haz-Mat emergency.
(800) 424-9300

DonJer
llene Court Building 8
Belle Mead, NJ 08502
(800) 336-6537

CIRCLE 239 ON FREE INFORMATION CARD

Figaro Engineering
Box 357
Wilmette, IL 60091
(708) 256-3546

CIRCLE 240 ON FREE INFORMATION CARD

Hamamatsu

PO Box 6910
Bridgewater, NJ 08807
(201) 231-0960

CIRCLE 241 ON FREE INFORMATION CARD

Klockit

PO Box 636
Lake Geneva, WI 53147
(800) 556-2548

CIRCLE 242 ON FREE INFORMATION CARD

Logical Devices

6600 NW 12th Ave., Ste 203
Ft. Lauderdale, FL 33309
(800) 331-7766

CIRCLE 204 ON FREE INFORMATION CARD
Midnight Engineering
PO Box 7041
Fort Collins, CO 80525
(303) 491-9092

CIRCLE 205 ON FREE INFORMATION CARD

NEC

401 Ellis Street
Mountain View, CA 94043
(800) 632-3531/(415) 960-6000

CIRCLE 206 ON FREE INFORMATION CARD
Pollution Equipment News
8650 Babcock Blvd
Pittsburgh, PA 15237
(412) 364-5366

CIRCLE 207 ON FREE INFORMATION CARD

Samsung

3725 North First Street
San Jose, CA 95134
(408) 434-5400

CIRCLE 208 ON FREE INFORMATION CARD

SGS-Thomson

1000 East Bell Road
Phoenix, AZ 85022
(602) 867-6259

CIRCLE 209 ON FREE INFORMATION CARD

Silicon Systems

14351 Myford Road
Tustin, CA 92680
(714) 731-7110

CIRCLE 210 ON FREE INFORMATION CARD

Small Parts

PO Box 381966
Miami, FL 33238
(305) 751-0856

CIRCLE 211 ON FREE INFORMATION CARD
Stock Drive Products
2101 Jericho Turnpike
New Hyde Park, NY 11040
(516) 328-0200

CIRCLE 212 ON FREE INFORMATION CARD

Synergetics

Box 809
Thatcher, AZ 85552
(602) 428-4073

CIRCLE 213 ON FREE INFORMATION CARD

Tektronix

PO Box 500
Beaverton, OR 97077
(800) 835-9433

CIRCLE 214 ON FREE INFORMATION CARD
Texas Instruments
PO Box 1443
Houston, TX 77001
(800) 232-3200

CIRCLE 215 ON FREE INFORMATION CARD
US DOT; ATTN: DHM-50
400 7th St SW, RM 84-20
Washington, DC 20590
(202) 366-0656

CIRCLE 216 ON FREE INFORMATION CARD
AZ) tinaja quest for two for the best entry of all. Please be sure to send your written entries directly to me and not over to Radio-Electronics editorial.

A flame detector

At one time way back when, far and away the numero uno hacker component was the NE-2 neon
lamp. It was incredible what you could do with them. Panel lamps, night lights, polarity detectors, spike protectors, winking oscillators, tiny disco stars, tone generators for electronic organs, vacuum-tube filament checkers, hot chassis testers, triggers, voltage regulators, and great heaping bunches more.

```
CMS-302
    Oxygen combustion sensor.
    Externally heated to 700-900 C.
    12 volt supply.
TGS-100
    For fumes and odors in air.
    1 volt, 440 milliwatt heater.
    100 volt supply.
TGS-109
    For natural gas and gasoline.
    1 volt, 440 milliwatt heater.
    100 volt supply.
TGS-203
    For carbon monoxide.
    0.8 volt, }700\mathrm{ milliwatt heater.
    12 volt supply.
TGS-813
    For propane and methane.
    5 volt, 830 milliwatt heater.
    24 volt supply.
TGS-822
    For DWI breath alcohol testers.
    5volt, 830 milliwatt heater.
    24 volt supply.
TGS-880
    For automatic microwave cooking.
    5 \text { volt, 830 milliwatt heater.}
    24 volt supply.
```

FIG. 4-A FEW VAPOR DETECTORS from Figaro Engineering. Each gets optimized for specific sensing tasks.

Sadly, the good old ten cent neon lamp isn't even on most hacker charts any more, done in by its need for high voltage, and its limited brightness and color range. Sigh.
But the Hamamatsu folks have come up with an interesting variation on the traditional neon lamp. It is known as an UVTRON R2868 flame sensor.
Figure 2 shows you a typical circuit. Any open flame has lots of ultraviolet energy associated with it. The circuit is a simple relaxation oscillator. In the absence of any ultraviolet energy, the oscillator fires only every few seconds or so. When sensing, the oscillator fires as much as 5000 times a second. Thus, you get an audio tone out in the presence of the ultraviolet energy from a flame, and only a few random clicks otherwise.

It's sensitive enough to easily detect a match at 10 feet. While the

THE MONEY MAKING OPPORTUNITY OF THE 1990'S
IF you are able to work with common small hand tools, and are familiar with basic electronics (i.e. able to use voltmeter, understand DC electronics).
IF you possess average mechanical ability, and have a VCR on which to practice and learn. . . .then we can teach YOU VCR maintenance and repair!
FACT: up to 90% of ALL VCR malfunctions are due to simple MECHANICAL or ELECTRO-MECHANICAL breakdowns!
FACT: over 77 million VCRs in use today nationwide! Average VCR needs sevvice or repair every 12 to 18 months!
Viejo's 400 PAGE TRAINING MANUAL (over 500 photos and illustrations) and AWARD-WINNING VIDEO TRAINING TAPE reveals the SECRETS of VCR maintenance and repair-"real world" information that is NOT available elsewhere!
Also includes all the info you'll need regarding the BUSINESS-SIDE of running a successful service operation!

free information

CALL TOLL-FREE 1-800-537-0589
Or write to: Viejo Publications Inc.
3540 Wilshire BL. STE. 310
Los Angeles, CA 90010 Dept. RE
CIRCLE 184 ON FREE INFORMATION CARD
Get A Complete Course In

8 volumes, over 2000 pages, including all necessary math and physics. 29 examinations to help you gauge your personal progress. A truly great learning experience.

Prepare now to take advantage of the growing demand for people able to work at the engineering level.

Ask for our brochure giving complete details of content. Use your free information card number, or write us directly. \$99.95, Postage Included. Satisfaction guaranteed or money refunded.

ALTERNATE ENERGY RESOURCES

Arco Solar

PO Box 6032
Carmarillo, CA 93010
(805) 482-6800

CIRCLE 217 ON FREE INFORMATION CARD

Assoc of Energy Engineers

4025 Pleasantdale S420
Atlanta, GA 30340
(404) 447-5083

CIRCLE 218 ON FREE INFORMATION CARD

Bergey Windpower

2001 Priestley Avenue
Norman, OK 73069
(405) 364-4212

CIRCLE 219 ON FREE INFORMATION CARD

Energy depot

61 Paul Drive
San Rafael, CA 94903
(415) 499-1333

CIRCLE 220 ON FREE INFORMATION CARD

Home Power

PO Box 130
Hornbrook, CA 96044
(916) 475-3179

CIRCLE 221 ON FREE INFORMATION CARD

HVAC Product News

400 N. Michigan Avenue
Chicago, IL 60611
(312) 222-2000

CIRCLE 222 ON FREE INFORMATION CARD

Mother Earth News

PO Box 70
Hendersonville, NC 28793
(704) 693-0211

CIRCLE 223 ON FREE INFORMATION CARD

Photocomm Inc

930 Idaho Maryland Road
Grass Valley, CA 95945
(800) 544-6466

CIRCLE 224 ON FREE INFORMATION CARD

Popular Science

2 Park Avenue
New York, NY 10016
(212) 779-5000

CIRCLE 225 ON FREE INFORMATION CARD

Real Goods

966 Mazzoni Street, \#4B
Ukiah, CA 95482
(800) 762-7325

CIRCLE 226 ON FREE INFORMATION CARD
Sandia National Labs
PO Box 5800
Albuquerque, NM 87185
(505) 844-5678

CIRCLE 227 ON FREE INFORMATION CARD

Snow Belt Solar

286 Wilson Street
Amherst, WI 54406
(715) 824-3982

CIRCLE 228 ON FREE INFORMATION CARD

Solar Energy

Maxwell House, Fairview Park
Elmsford, NY 10523
(914) 592-7700

CIRCLE 229 ON FREE INFORMATION CARD

Solar Energy Research Inst

1617 Cole Blvd
Golden, CO 80401
(303) 231-1000

CIRCLE 230 ON FREE INFORMATION CARD

Solar Jack

325 East Main
Safford, AZ 85546
(602) 428-1092

CIRCLE 231 ON FREE INFORMATION CARD

Solarex

1335 Piccard Drive
Rockville, MD 20850
(301) 948-0202

CIRCLE 232 ON FREE INFORMATION CARD

Solec International

12533 Chadron Avenue
Hawthorne, CA 90250
(213) 970-0065

CIRCLE 233 ON FREE INFORMATION CARD
Solvonics Solar Systems
1100 West Maple Road
Troy, MI 48084
(313) 362-4170

CIRCLE 234 ON FREE INFORMATION CARD

Southwest Windpower

PO Box 22178
Flagstaff, AZ 86002
(602) 526-0997

CIRCLE 235 ON FREE INFORMATION CARD

Whole Earth Review

27 Gate Five Road
Sausalito, CA 94965
(415) 332-1716

CIRCLE 236 ON FREE INFORMATION CARD

Yellow Jacket Solar

Box 253
Yellow Jacket, CO 81335
(303) 562-4884

CIRCLE 237 ON FREE INFORMATION CARD

Zomeworks

PO Box 25805
Albuquerque, NM 87125
(505) 242-5354

CIRCLE 238 ON FREE INFORMATION CARD
recommended supply voltage should be within ten percent of 325 volts, you can usually work with the simple line-operated voltage doubler shown.

Note that it is a "hot chassis" type of circuit with a severe shock hazard potential. You'll probably want to use an optocoupler on the output in your final circuit, and an input isolation transformer would also be a good idea. The output pulses are normally around eight volts high and about five microseconds wide.

Two use tips: Be sure the anode resistor is physically quite close to your flame sensor. And avoid having two sensors near each other, since they produce ultraviolet in use and could badly interact or even latch.

Hamamatsu also makes small and complete flame-sensor circuit cards ready for use that run off the usual 24 -volt AC thermostat transformer. While intended for flame detection in gas heaters and air conditioners, there should be lots of other interesting hacker uses. What can you come up with here?

A great new data book

I've seen some exciting data books before, but this one is way off the scale. It reads like a pulp novel that you literally cannot put down. Each and every page is crammed full of outstanding new low-cost hacker integrated circuits that cry to be used.

I am referring to the new Linear IC Volume I data book by Samsung. That beauty is crammed to the gills with audio, video, and remote-control toy radio chips. All sanely priced, and all with detailed application examples.

As a random example, let's drop in on page 178 where we see a sin-gle-chip 5 -band graphic equalizer. Full details appear in Fig. 3.

While it is a five-band equalizer, you can easily use a pair of chips for a ten-bander, again per their data book. Only a volume control and a pair of capacitors are needed per band.

Other goodies in the book include audio-power amplifiers and preamps, the complete toy R / C vehicle remote drivers, infra-red encoders and pre-amps and bunches more.

FIG. 5-A DWI BREATH-ALCOHOL TESTER that uses the Figaro TGS-822. The presence of 500 parts per million of grain alcohol lowers the cell resistance by a factor of 10 , raising the output voltage.

Fume and vapor detectors

There's lots of reasons why you might like to detect any organic or chemical vapors in the air. In home uses, we have gas-leak detection, fuel vapors, carbon monoxide, "stuffy" air ventilation controls, auto microwave oven "the roast is done" sensing, DWI breath-alcohol testers, the combustion monitoring, odor detection, and oxygen sensing.

Similarly, industrial sensors are sometimes required for ammonia, hydrogen sulfide, organic vapors, for freon, and other organic vapors.

The people at Figaro Engineering have dozens of low-cost and easy-to-use sensors, optimized for various substances. Figure 4 summarizes many of their key models. Quantity costs are in the $\$ 5$ range.

In general, each sensor consists of a sintered block of tin oxide, with variations that will optimize for any particular sensed vapor. An internal heater is used to raise the surface temperature to the 200 - to 400-degree Centigrade range.

Through surface absorption, the resistance of the tin oxide will drop in the presence of an organic vapor. The amount that the resistance drops depends on the vapor and its concentration.

For instance, Fig. 5 shows you how the TGS822 gets used as a breath-alcohol detector. You apply a 5 -volt AC or DC heater voltage at a current of 120 milliamperes or so. You apply a main supply voltage of 24 volts AC or DC, and sense an output voltage across a 3.9 K load
resistor.
In the presence of 300 parts per million alcohol, the sensor resistance will drop by $10: 1$. At 3000 parts per million alcohol, the sensor resistance will drop by $50: 1$. Thus, both the presence and the strength of the organic vapor can be measured. The response time is typically a few seconds.

These sensors are relatively broad-spectrum devices. They may well respond more strongly to certain other vapors than the one you are really looking for. Thus, they will work best in those situations where one and only one vapor or contaminant is expected.

Ads for similar sensors appear in Pollution Equipment News. Let me know if you want more details on sensors of that type.

Alternate-energy resources

Bowseretta and I were recently day hiking over at Antelope Springs, a long-abandoned hippie commune. Besides the obligatory rusting VW microbus shells, the ruins of dozens of alternate-energy experiments seemed strewn about. There were octagon earthsheltered houses, a sauna and hottub combo lovingly crafted from the native stone, the broken Savonious windmill rotors, countless cracked batteries, and various solar stills.

At least one of those stills must have been a monumental disaster, since the evaporator and the condenser were both designed to operate at the same temperature and continued on page 72

Audio UPDATE

Is sound quality a matter of taste?

LARRY KLEIN,
AUDIO EDITOR

IN MY LAST COLUMN I DISCUSSED some of the strange beliefs that in the past linked sound preferences to the nationality of the listeners. Philosophically, such a position is part of a larger view that holds that any preference for a particular sound balance is simply a matter of taste. Some home listeners like a "rich, mellow sound" with lots of upper-bass emphasis, others prefer a "clear, distinct sound" with the balance tilted toward the upper frequencies, and still others prefer a sound with lots of "pres-ence"-meaning upper-midrange emphasis. And, of course, there are those strange individuals (such as myself) who tend to prefer the sound of systems that during objective tests show a wide and flat frequency response.

You may have noticed that all my comments have related sound quality to frequency response. I don't mean to imply that frequency response is the only factor that determines a component's sound quality, but when an amplifier or speaker is not being over-driven (or suffering from some internal fault) frequency response differences are responsible for perhaps 95% of the "quality" differences heard between audio products.

Don't just take my word for it. If you have a 10-band equalizer as part of your system you can demonstrate for yourself how easy it is to add (or subtract) such subjective audio qualities as openness, air, solidity, detail, warmth, body, and so forth. Depending on the frequency bands involved, a
change of only 2 or 3 dB in slider position can have an enormous effect on the "quality" of the sound you're hearing.

Does everyone hear differently?

It's true that no two pairs of ears respond identically. But it's also true that everyone is listening to the same objective sonic reality, and that there is a more-or-lessdirect correspondence between the objective world of sound and the impression it makes on our auditory apparatus. For example, if you were to shred this issue's Reader Service card in an operating electric fan it would create a specific sound. If you were able to make a perfect recording of that sound and play it back through a perfect sound system, everyone would agree that the original and recorded sounds were identical. That agreement should hold despite possible differences in sonic taste-or in the acuity of their ears. In other words, whatever aberrations exist in a person's hearing, within his limitation he should be able to tell when the sonic properties of two audio systems are alike. And ultimately-by definitionreproduced sound should be referenced to some original.

So why do many speaker systems in the same general price range sound different from each other? (Incidentally, the situation has vastly improved during the 35 years or so that I've been evaluating speakers. The differences in tonal quality heard among today's best speaker systems are quite small; similar in nature and ampli-
tude to what you might hear in different seats in a good concert hall.) As I discussed last month, for many years most of the major Japanese designers appeared convinced that speakers should be designed to taste. I thought a breakthrough had occurred in the early 1970'a when I was invited to Japan to see, among other things, a new computer-assisted speakerevaluation setup.

Computerized Evaluation

Visualize, if you will, a large, acoustically neutral listening room. On a slightly raised dais at the front is a stage with several speaker systems positioned on the periphery of a large, electrically driven "lazy Susan." One speaker is always at stage-center position. A push of a button rotates the assembly until the next speaker in line is centered. On the arm rest of each of forty audience chairs is a small box with a pilot light and seven pushbuttons labeled, respectively, $-3,-2,-1,0,+1,+2$, and +3 .

During the evaluations, an acoustically transparent curtain conceals the speakers, and the speaker-positioning button is pressed to bring one of the nowhidden speakers into playing position. After a few moments of lightclassical program material, the button is pressed again, a different speaker moves into playing position, and the program material is repeated. The pilot light on our individual response boxes then lights up, and the audience is instructed to push one of the num-
bered buttons to indicate the degree of our preference between the first and the second speakers. Pushing the zero indicates no preference, pushing a plus number indicates how much more you like the second speaker than the first, and pushing a minus number would show how much less you like it.

I must confess that I didn't care for the sound produced by any of the speakers, so I was hard pressed in each case to pick the lesser of the two evils. Where did the computer come in? It simply tabulated the results. The pushbutton data from the audience response boxes was fed to the computer, which provided an instantaneous readout on how many listeners preferred which speakers, to what degree, and-in the full-scale tests-with what kind of music. (Incidentally, my hosts also believed that different speaker sound qualities were desirable depending upon whether one preferred classical, pop, or rock music.)

I asked who normally filled the chairs during an evaluation session, and it was carefully explained to me that since the goal was to design speaker systems that would appeal to a large cross-section of the public, the audience was carefully chosen to be representative of that cross-section. Women from the assembly line, maintenance men, clerical workers, and so forth all had their chance to push buttons. During repeated tests the designs were modified until the sound quality satisfied most of the listeners. I found it paradoxical that this vox populi approach to speaker design was backed up by a

LARRY KLEIN IN THE SPEAKER ROOM in the Sato Musen showroom in Akihabara, Tokyo.
laboratory with more and better instrumentation than I had ever seen in any U.S. lab.

The bottom line

Today, it is evident that most U.S., and some Japanese, audio companies reject the notion that speaker design is a matter of taste. Many years ago I was told by the head of the Swedish Broadcasting System that when they set out to reequip all their studios with new monitors, the Yamaha NS-1000's won out over dozens of European and U.S. competitors during blind listening tests. That didn't particularly surprise me, since at the
time I was using a pair of the Yamaha NS-1000's at home. I had chosen them because of their compact size and clean, flat, uncolored response.

Keep in mind that any speaker that has a sonic characteristic of its own will add that quality to whatever material is being reproduced. There are undoubtedly special circumstances when the sonic balance of a given recording might be enhanced by the frequency aberrations of a particular speaker. But most of the time such colorations would serve only to degrade the complex process of high-fidelity reproduction.

Ed has yet to find a salesman who knows as much as he does.

Sure it looks great. Now l've got to build the inside.

Drawing BOARD

Let's plunge deeper into video

ROBERT GROSSBLATT, CIRCUITS EDITOR

FIG. 1

THE MORE YOU START MESSING around with video, the more jokes you hear about the NTSC standard...Never Twice the Same Color, and so on ad nauseum. Now, I'm the first to admit that it's far from being ideal, but let's also remember that the National Television Systems Committee designed the color standard more than thirty years ago and, when they did it, they had to make sure it was compatible with the black-and-white standard that came before it.

If you're old enough to remember the introduction of color TV, you might also remember some of the schemes that were proposed. If you do, you should also realize that the guys who came up with NTSC did a pretty good job. One alternative I remember had something to do with a wheel of colored gels that revolved in front of the camera. It was a mechanical nightmare and, fortunately, I've forgotten the rest of it. If any of you know more about that, or any of the other early color proposals, drop me a note and I'll pass them on to everyone.

In any event, however crazy the NTSC system seems, it's a lot better than any of the others that were proposed at the time, and no mat-
ter what else you have to say about it, it works.

The hallmark of the NTSC standard is that all of the individual signals that make up the complete waveform can be derived from one master clock-everything is locked to everything else. Before we get to the arithmetic, however, let's review some video basics and define some terms.

Fields, frames, and interlace

The NTSC standard picture we all watch and love is produced by having the electron beam paint a series of successive lines of video on the face of the TV tube. The electron beam in the tube has to make two passes in order to paint a complete picture, called a "frame," on the screen. The first pass puts out the odd-numbered lines of video and the second pass puts out the even ones. Each of those half images is called a "field." The reason for the system, called "interlace," is to reduce the amount of flicker on the screen. If all the lines were sequentially painted, the top would begin to fade before the screen was completely "painted."

The vertical scan rate is the amount of time it takes the beam
to paint each field (half a frame) of video. In the black-and-white days, the vertical rate was set to match the $60-\mathrm{Hz}$ power-line frequency to minimize interference on the screen. Since each field took $1 / 60$ th of a second, a full frame took twice that-or $1 / 30$ th of a second. Knowing that, and remembering that each frame of video is made up of 525 horizontal lines, we can begin to understand where the TV-signal frequencies come from.

Since it takes $1 / 30$ th of a second to paint 525 lines, the horizontal scanning frequency is $525+x 30 \mathrm{~Hz}=15.75 \mathrm{kHz}$ and each line is painted in $1 / 15.75 \mathrm{kHz}=63.5$ +mu sec. Those numbers were slightly modified when the NTSC

FIG. 2

FIG. 3
color standard was developed, but the simple exercise we just went through should help you understand where the numbers came from in the first place.

The master clock for the NTSC color standard was set to be 3.579545 MHz , and all the other signals are derived from it. While the older standard used the power-line frequency and number of scan lines as the basis for the TV picture, the 1953 color standard is built around the burst frequency and a strict arithmatical relationship defined all the other frequencies.
The horizontal scan rate was defined to be the colorburst frequency multiplied by $2 / 455$ (not exactly obvious), and when you do the arithmetic you'll wind up with $15,734.26 \mathrm{~Hz}-$ not as neat as the old $15,750-\mathrm{Hz}$ standard, but close enough to lock the horizontal circuitry in old black-and-white TV sets.
The same sort of "close enough" results show up when you calculate the vertical frequency. Given a horizontal scan rate of $15,734.26$ Hz , it follows that each line takes
63.56 microseconds, or just slightly longer than the older standard of 63.50 microseconds. Since the new color standard still contained 525 lines in each frame, the vertical frequency works out to 59.94 Hz . That's close enough to the original $60-\mathrm{Hz}$ to avoid interference and still accommodate black-and-white TV sets.
A lot of you might be wondering what I have in mind when I talk about "older black-and-white TV sets." If you pay a visit to your local TV store, you'll find that it's almost impossible to buy a black-andwhite TV set anymore, just as, back in 1953, when the NTSC defined the color standard, it was almost impossible to buy a color TV. Since the majority of existing TV sets were black-and-white, compatibility was the overriding issue. It's not such a big deal now but, back then, when the NBC peacock opened its tail, a lot of viewers were happy to hear the magic words "compatible color."

Generating sync triggers

Now that we've put the historical matters behind us (the
important numbers and the relationships between them are summarized in Fig. 1), our job is to develop some hardware. The only circuitry we have working so far is the 8284 clock circuit shown in Fig. 2 , and I've indicated the frequencies that it produces.
Getting colorburst from the circuit is easy since the osc output is a buffered version of the crystal. A bit of simple arithmetic tells us that 14.318 MHz divided by four equals the burst frequency of 3.579 MHz . You can see from Fig. 1 that getting horizontal sync from the burst is going to take some multiplication as well as division. Since that's a real pain in the neck, we'll start our search for horizontal sync with one half osc, rather than the burst. That way we can stick with frequency division and make things somewhat easier.
We all have our own preferences but, if you're a regular reader, you know I like to use CMOS whenever I can. In this case, however, we're going to use some TTL to do the first part of the division since the circuit is operating at 5 volts (because of the 8284). CMOS parts
can certainly operate at 5 volts, but the lower the supply voltage, the lower the maximum frequency the parts can handle. You can solve that by using 74 HC or 74 HCT parts but, in this case, it really doesn't matter very much. Just remember that the circuit in Fig. 3 is only one of the numerous ways to get the job done.

The frequency available at the output of the first 7474 is half the crystal frequency, or 7.159 MHz . We have to divide that by 455 to get horizontal sync and, at first glance, 455 is a screwy number to deal with-it's much nicer when numbers are readily divisible rather than apparently prime. Well, 455 can be factored into $13 \times$ 5×7, so the first thing we'll do is divide the frequency by 7 using what should be an old TTL friend, a 7490 counter. That will produce a frequency of 1.022 MHz , and that is low enough to be handled by regular CMOS parts operating at 5 volts. So we can still use ordinary CMOS parts.
All we need to get horizontal sync is a way to divide the resulting

No costly School. No commuting to class. The Original Home-Study course prepares you for the "FCC Commercial Radiotelephone License". This valuable license is your "ticket" to thousands of exciting jobs in Communications, Radio-TV, Microwave, Computers, Radar, Avionics and more! You don't need a college degree to qualify, but you do need an FCC License. No Need to Quit Your Job or Go To School This proven course is easy, fast and low cost! GUARANTEED PASS - You get your FCC License or money refunded. Send for FREE facts now. MAIL COUPON TODAY!
COMIMAND PRODUCTIONS FCC LICENSE TRAINING, Dept. 90 P.O. Box 2824, San Francisco, CA 94126 Please rush FREE details immediately! NAME ADDRESS CITY
frequency by 13×5, or 65 . Now, seeing the number 65 should set off an alarm in your head, because it's very close to 64 , which is one of the magic numbers of the digital world. And, that being the case, we can handle the rest of the division with a 4040 CMOS binary ripple counter, and a simple twolegged gate. When the count reaches 65 in the 4040 , only two pins will be high; the Q0 and the Q6 outputs. The And gate will decode the two 4040 outputs and go high at exactly the rate we've been looking for; $15,734.26 \mathrm{~Hz}$. The horizontal sync trigger at the output of the and gate is positive-going so therefore we can also use it to reset the 4040 CMOS binary ripple counter.
We haven't talked much about vertical sync other than to say that it's close to the $60-\mathrm{Hz}$ power-line frequency. Well, as they say, "close" only has meaning with horseshoes and hand grenades. If the vertical rate had been exactly 60 Hz as it was in the pre-color days, it would have been a snap to generate. Just feed a 5369AA with the burst frequency and you'll get 60 Hz out at the other end. As we saw earlier in the column, however, things aren't that simple since vertical sync has to be derived from the signals we've generated so far and the number of lines on the screen.

The NTSC standard calls for a 525-line image, but don't forget that each image is made of two interlaced fields. That means that we are going to need a verticalsync signal after each field of vid-eo-or after every 262.5 lines of video. That's the relationship shown in Fig. 1, and that's also the design job that we have laid out in front of us.

We don't have any handy frequency available to avoid multiplication this time, so we'll have come up with a way to do it electronically, and that's exactly what we're doing with the Nand gate in Fig. 3. The first two gates, A and B, are set up as simple edge detectors. Gate A responds to the nega-tive-going edge and gate B to the positive-going edge. If you work out the truth table on a sheet of paper, you'll see that the frequency at the output of Gate D is twice
the input frequency at Gates A and B.

We're feeding the nand gates with horizontal sync so that we'll wind up with $31,468.52 \mathrm{~Hz}$ at the output. The next (and last) part of the circuit has to divide the frequency by 525 , which, as you should know, is the number of lines in a frame. Since we're working with twice the horizontal sync rate, we'll really be generating vertical sync every 262.5 lines-or after each field.

It's possible to factor 525 as 5×5 $\times 7 \times 3$ and do the division with simple counters but, just as we saw with producing horizontal sync, you have to keep your mind open when you're trying to figure an easy way to do division by a larger than usual number. In this case, 525 is pretty close to the magic number of 512 , so we can use the same ordinary CMOS part that we used earlier in our design-the 4040.

When the number you're trying to divide by is close to one of the powers of 2 , a long binary divider becomes a good choice. In our case for example, we're only thirteen away from 512, and that means we only have to decode four of the 4040 outputs (525 decimal is 100001101 in binary). The job becomes even simpler since we still have three spare and gates in the circuit. As with horizontal sync, the vertical-sync trigger is positive-going, so we're also using it to reset the 4040 binary ripple counter IC.

When you put the circuit together and power it up, you should see colorburst (3.579545 MHz), a horizontal-sync trigger at $15,734.26 \mathrm{~Hz}$, and a vertical-sync trigger at 59.94 Hz . Keep in mind that the last two aren't the final signals. They're only the frequencies we need to trigger the one shots that will output pulses of the proper width to work as horizontal and vertical sync for the video that we'll be generating very shortly.

When we get together next time, we'll design the one-shots and put together a circuit that will actually produce video images. We won't be seeing an image of the Mona Lisa on the screen, but what we see will be recognizable. I promise.

R-E

COMPUTERDIGEST

SECURE YOUR HARD DISK WITH PC ACCESS

Computer security may seem like a problem only for large corporations or the government. However, small businesses and home computers often contain sensitive information that should be protected. For example, if you have a small business, your payroll records may not seem to be the most sensitive information in the world, but a competitor would certainly love to see them! And you wouldn't want your babysitter to boot your PC and get into your checkingaccount data!

There are many approaches to PC security, but the one offered here is a combined hardware/ software solution. PC Access provides one master password, which enables access to the password list and to other functions, and fifteen user passwords. An EPROM on a small expansion card contains a BIOS extension that hooks PC Access into your PC's boot procedure. The circuit is simple and inexpensive to build; a kit is available for less than \$35.

PC Access provides several extras, including a hold function
that allows the user to suspend computer access by pressing a hotkey. The computer then idles until the correct password is entered. The hotkey combination can be configured for compatibility with various memoryresident programs. In addition, you can maintain an audit trail of who logs onto the system. The audit file is encoded, hence meaningless when viewed with a DOS TYPE command. A program provided with the kit decodes the file into ASCII format.

How it works

PC Access works by altering DOS's normal boot procedure in several ways. First, PC Access forces the system to boot from the hard drive by disabling access to floppy drive A during the boot process. Thus, you can't disable PC Access simply by booting from a floppy.

In addition, a software driver must be loaded via CONFIG.SYS and processed by DOS in the usual manner, otherwise the system will not boot. That means that you can't boot the PC by decontinued on page 73

EDITOR'S Work BENCH

Personal Computers and the Future

Itend to spend most of my time here poking around under the hood. For a change, let's take a step back and look at things from a wider perspective. The occasion? The beginning of a new year and of a new decade. For me it's just past the first of the year, and though you won't read this for a good three months, I hope you'll find it interesting.

It's hard to believe sometimes how much this industry has grown the past decade. In the murky beginnings ten or twelve years ago, hobbyists and technically oriented people were the only ones who used personal computers. Now estimates range as high as 40 million PC users in this country alone, and obviously, the vast majority of them don't know a bit from a byte. That makes us members of a pretty elite group.

Personal computers have caught on faster than just about any other modern invention, and they have altered the way we work (and play) so drastically that, short of catastrophe, it's inconceivable that we might ever return to the way things used to be done.

However, industry growth is slowing, partially because of market saturation, and partially because those 40 million people are having trouble adjusting to what's happened so far. Many industry analysts believe that the
fastest growth during the next few years is not going to be in new systems or new technologies, but in putting what we ve already got to better use. In short, service and support industries are the growing segments of the computer business.

To be sure, top-notch programmers and engineers will still be needed in droves. But the strata beneath those very top levels have to be filled out as well. So if you're trying to plan out your career, think about activities like the following:

- System Integration: With the proliferation of various hardware and software "standards," people who understand the PC architecture and know how to resolve conflicts between competing hardware adapters have been and will continue to be valuable.
- Network Support: Some analysts believe that if the 1980's was the decade in which personal computers brought quality and quantity increases to individual users, the 1990's will be the decade in which those users are linked together. From the support point of view, networks represent an area with much growth potential, both for installation and for maintenance. I've never seen a network with a level of reliability approaching even $1 / 100$ th that of the PCs on which it is based. From the development point of view, networks offer virtually unlimited growth opportunities. At this point in time many companies are connecting their PC's together physically. But a lot of work still needs to be done to give some intelligence to the way they interact.
- Applications Support: Becoming an expert in a core group of applications (including just about any major word processor, spreadsheet, and database manger) will just about guarantee you gainful employment as well as a growth path in any decent company. People like to blame software for being hard to use; I believe that in many categories, the software is sufficiently easy to use (or close to it); it's the users who need to be better educated. Modern software has powerful new ways of doing things; along
with that power comes the responsibility for learning how to use it. Until the time when children start studying word processing and the like on a wide scale at the grade school level, applications support personnel will continue to be necessary.
- Hardware Service: This is a negative category; jobs here will shrink. Component-level servicing has always been difficult and time consuming; as the semiconductor industry achieves greater and greater component density, and as labor costs continue to skyrocket, upper-level management will dictate that labor-intensive procedures be eliminated. This is not a new trend, but one that will certainly continue. If you want hands-on contact at the component level, figure on working in an engineering lab, either as an engineer or as a research technician. You'll need almost as much education to be the latter as the former; you'll just get paid less. So stay in school as long as you can.
- Education: There is now and will continue to be a crying need for technically competent people to join the ranks of educators. Society as a whole, however, needs to rethink the process of education, take it out of the realm of rote memorization, and bring it into the realm of interactive, self-paced, wide-area-networkable interaction that focuses on mastering processes, not just memorizing facts. Both what we teach and how we teach it are two of society's biggest questions. Education and entertainment must merge to a great extent.
- Entertainment: The rise of the video industry (VCR, cable TV, satellite TV, MTV), various technical advancements in the PC industry (the compact disk, highresolution video, interactive adventure games, graphical operating environments), and the emerging multimedia industry all lead one to realize that people want control over their entertainment, as well as lots of variety. The television networks will never again enjoy the power they once had. Emerging technologies will allow people to buy off-the-
shelf packages combining the forms of entertainment they like. Kind of like buying videotapes, but these new forms will have full motion video, still graphics, high-fidelity sound, and will be fully interactive. The technologies to do this are just now becoming available; there are no standards about how to fit it all together. All the largest computer companies (IBM, Apple, HP, and more) are investing heavily in this area; getting in on the ground floor here is guaranteed to be challenging and exciting.

If you thought the 80's were exciting, just wait. The 90's are going to be even better:CD

MathEdit

Word processing has improved enormously the past decade; it's still the most popular PC application. Users have benefited greatly from the feature wars brought on by vendors competing for the huge word processing market. However, support for editing mathematical equations is lacking from all major word processors. In fact, the only package I know of that does have an equation editor is Lotus Manuscript, which although powerful, is geared toward producing long technical documents, and is unsuited for simpler tasks.

K-Talk Communications has a solution: MathEdit. It is a textmode program that lets you create equations interactively, and then export them in resolu-tion-independent PostScript format, HP PCL (LaserJet), or one of several bit-mapped formats (PIX, TIFF). You can then import the file thus created into a word processor or desktop publishing program just like any other graphic. PageMaker and Ventura

R-E Computer Admart

GETTING THE MOST FROM YOUR PRINTER

BP181-It is probable that 80% of dot-matrix printer users only ever use 20% of the features offered by their printers. This book will help you unlock the special features and capabilities that you probably don't even know exist. To order your copy send $\$ 6.95$ plus $\$ 1.50$ for shipping in the U.S. to Electronic Technology Today Inc., P.O. Box 240, Massapequa Park, NY 11762-0240.

SECRETS OF THE COMMODORE 64

CIRCLE 61 ON FREE INFORMATION CARD
of course can handle that type of file; in addition, modern versions of Word, WordPerfect, and WordStar all have the ability to import such files and display them in a bit-mapped preview mode.
MathEdit comes on four 360K diskettes. You install the program simply by creating a directory on your hard disk and copying all files to it; you'll need about 1.5 MB of space. Then you run the program, which takes you to a setup utility in which you specify the output file type and the program into which you'll be importing equations. (Currently, WordPerfect 5.0, Word 5.0, WordStar 5.5, TEX, and Manuscript are supported.) The version of the program that I examined (1.22B) had a lot of confusing information about setting the program up to work with HP LaserJet soft fonts, but if you choose either PostScript or a bitmapped output format, you can ignore all that. (Also, the company will be dropping support for PCL output in version 2.0, due out about the time you read this.)

As shown in Fig. 1. MathEdit's screen is divided into three windows. System messages are displayed in the bottom window; the cursor and what you type appears in the top window. In the middle window you see a very rough approximation of what

FIG. 1
your equation looks like, or if you press F2 (Help), a list of what the function keys do.

Entering an equation into MathEdit is like typing a formula into a pocket calculator that uses algebraic (not RPN) notation. You type numbers and simple functions (,,$+-=$, etc.) in directly; you must go through several function-key menus to enter more complicated functions (integrals, summations, roots, fractions, matrix notation, trig and
log functions, vectors, "not" bars, braces, brackets, vertical bars, etc.).

You can move around the editing window using the cursor keys, Home, and End; delete characters with Del and BackSpace; and delete to end of line with Ctrl-End. As you type, the middle window provides a rough approximation of your equation. MathEdit also contains a graphic preview mode that provides a more accurate representation of

HARDWARE HACKER
continued from page 63

pressure. Oh well. I guess an awful lot of dreams died here...somewhere along the way.
On the other hand, the solarpump factory down the street is bursting at the seams with new activity. It seems a dose of reality has at long last caught up with alternate energy. The old order fadeth.
So, where does that leave us? What are the key hardware-hacker alternate-energy resources for the nineties? This month's resource sidebar gives us a clue or two.

The very core of today's alternate energy appears to be a funky little magazine known as Home Power. Besides its no-nonsense shirtsleeves tech articles, that gem is full of ads from all of the leaders in the field. Cost is around $\$ 6$ per year.
Still at the same old stall is the good old Whole Earth Review, the ongoing continuation of the original Whole Earth Catalog and its progeny. Of the 497 magazines I personally subscribe to, that one is number two, right up there behind $M A D$. Nothing else even comes remotely close. Today the WER folks are heavy into CD ROM distribution and their major alter-nate-lifestyle BBS system widely known as The Well.

While both Mother Earth News and Popular Science have lots of useful alternate-energy stuff in them, there is a key difference. PS will admit that they have contacted a terminally incurable case of Yuppus dementus, while MEN does not.
I've found that HVAC News, a free air-conditioning trade journal, also has a surprising amount of the alternate-energy stuff in it.

Although most of the other solar and wind magazines have folded, Solar Energy remains as one useful, but highly technical resource.

The feds have bunches of alter-nate-energy info available, spread over a dozen agencies. The Department of Energy often sponsors seminars and technical-paper presentations. So does the National Bureau of Standards. Try any large continued on page 76

FIG. 2
the equation. I found that the graphic preview mode didn't always work correctly; the company stated that the bugs won't be fixed in the current version, because 2.0 will operate entirely in a WYSIWYG (what you see is what you get) graphics mode.

After you've got your equation the way you want it, you save it. The program actually saves two versions of the file: one, which contains the master data, has the extension EQU; the other, which contains the desired output format, has the appropriate extension (PIX, TIF, EPS, etc.). If you're set up for PIX output and decide at a later time that you need PostScript (EPS) files-no problem. Just run the setup routine and select the new output format. Then reload and resave the desired equation.

At that point you can fire up your word processor and follow its normal procedure for importing a graphic file. I tested MathEdit with WordStar 5.5 , which actually uses Inset for graphics display and printing, and had no problem. If you wanted to get really fancy, you could use Inset to touch up the PIX file created by MathEdit. However, as shown in Fig. 2 (an actual size, unretouched equation printed by WordStar and Inset on an HP LaserJet Series II), you probably won't need to.

To really polish the appearance of your equation, you can enter thin and wide spaces. You can also align a group of equations on a character (the equal sign, for example), and you can number equations. In addition, a number of special characters and symbols are mapped to various Altand Ctrl-key combinations. For example, most common Greek characters are mapped to Alt-A-Alt-Z, and many common mathematical symbols are mapped to Ctrl-A-Ctrl-Z. Because of
display limitations, you'll need an EGA, VGA, or Hercules Graphics Card Plus (with RAMfont) to view the symbols in the textmode screen. You can re-map the special characters to different key combinations, but you can't define your own special symbols. However, version 2.0 is supposed to correct that deficiency.

All in all, MathEdit is darned handy for anyone in school or anyone who has to publish documents with equations. The current version is good; I expect version 2.0 to be great!

ITEMS DISCUSSED

- MathEdit (\$199.95), K-Talk Communications, 30 West First Avenue, Suite 100, Columbus OH 43201. (614) 294-3535.
CIRCLE 30 ON FREE INFORMATION CARD

bulletin board system

(RE-BBS) 516-293-2283
The more you use it the more useful it becomes.
We support 300 and 1200 baud operation.

Parameters: 8N1 (8 data bits, no parity, 1 stop bit) or 7E1 (7 data bits, even parity, 1 stop bit).

Add yourself to our user files to increase your access.

Communicate with other R-E readers.

Leave your comments on R-E with the SYSOP.

RE-BBS
516-293-2283

PC ACCESS

continued from page 69
leting the software driver or by changing the contents of CONFIG.SYS. Thus it is impossible to gain access to a secured PC without removing the PC Access card.

Further, PC Access locks out the use of the Ctrl and Alt keys on the PC keyboard, so pressing Ctrl-C or Ctrl-BREAK will not halt the boot process.

Additionally, some computers have monitor or setup functions that can be accessed before DOS has booted. Those setup routines are typically entered by pressing some combination of Ctrl, Alt and some other key. Locking out Ctrl and Alt provides a means to prevent unauthorized access to those functions during boot.

At boot time, PC Access's device driver (SECURITY.BIN) prompts the user for a password and optionally for a user ID as well. The passwords and user ID's are stored in an encoded form inside the device driver. If no valid password is entered in three attempts, access to the computer is denied until it is rebooted. A new password prompt appears each time the computer is rebooted.

After a valid password has been entered, the device driver restores access to drive A, re-enables use of the Ctrl and Alt keys, and returns control to DOS so that it can execute the remaining CONFIG.SYS commands and give user access to the PC.

DOS's boot sequence

When an IBM (or compatible) PC executes its power-up routines, one chore is to search for BIOS extensions. The extensions are located in memory segments C000h through EFFFh. The BIOS searches that area in 2 K steps, looking for the two-byte sequence, 55 h AAh. If the BIOS finds that "signature," it then assumes that the next byte contains the length (in 512-byte chunks) of the routines contained in the ROM. Next the BIOS computes a checksum on the area described. The checksum must be zero for the extension to be recognized. Once the exten-
sion is recognized, the computer executes a far call to the fourth location in the ROM. That call is provided so that the ROM can perform any required initialization. The initialization routine should exit with a far return. The BIOS then continues searching for other extensions. Once all of the legal addresses have been searched, DOS is booted.
Part of DOS's boot procedure is to load the CONFIG.SYS file that is stored in the root directory, and perform any setup and configuration functions specified in the file. One advantage of using a device driver to request user passwords is that the passwords and user ID's can be stored inside the device driver rather than in the EPROM. Circuit cost and complexity would increase if that information were stored in EEPROM.

The software included in the

PC Access EPROM sets up a new interrupt handler for floppy- and hard-disk access. The new routine allows DOS to boot from the hard drive, but not from drive A. A second interrupt is established that intercepts scan codes from the keyboard and disables the Ctrl and Alt keys.

Circuit details

The PC Access EPROM is mapped into an 8 K slot in the PC's address space somewhere between COOOH and EFFFH. As shown in Fig. 1, decoding the desired address is accomplished with a 74LS30 eight-input NAND gate (IC1) and a 74LS04 inverter (IC2). When all eight NAND-gate inputs are high, then the output will be low; otherwise, the output will be high. A low output enables the EPROM's chip select ((cs) input (pin 20).
The address that is actually de-

Fig. 1. PC ACCESS SCHEMATIC: IC1 and IC2 decode the $8 K$ block where EPROM IC3 resides. The one-shot (IC4) and associated components extend the memory access cycle, thereby allowing slow EPROM's to be used.
coded is determined by the positions of five address-select jumpers, which are connected to address lines A13-A17. The jumpers determine whether the true or the inverted address lines from the expansion bus are routed to IC1. When a line goes directly to IC1, that line must be a high for the chip-select signal to occur. When the inverted address line is used, it must be a low.

Address lines A18 and A19 drive IC1 directly, because both will be high whenever an address greater than or equal to COOOO is accessed. The A13-A17 lines further decode the address; any available 8 K slot from COOOO-EEOOO may be used. Jumper settings and corresponding addresses are shown in Table 1.

The aen signal from the expansion bus shows whether the address and data busses are currently being controlled by the microprocessor or by the 8237 direct memory access (DMA) controller. The PC Access EPROM should be enabled only when the microprocessor is controlling the bus, so an inverted version of AEN is routed to IC1.

Data and address lines to the EPROM are connected to the corresponding data and address lines from the expansion bus. The EPROM's output enable ($\overline{\mathrm{OE}}$) is provided by the memory read (MEMRD) signal from the bus.

The 74LS 123 is a one-shot that provides a $150-\mathrm{ns}$ pulse at its 81 output (pin 13) each time the EPROM is selected (i.e., each time cs goes low). The output of the one-shot drives Q1, a 2N2222 NPN transistor, which pulls low the expansion-bus signal $\overline{\text { IOCHKRDY. That signal is used to }}$ insert a wait state into the memory access cycle, and is used to allow slow EPROM's to be used on a fast bus. Slow EPROM's (250 ns) are easier to buy and less expensive than fast (150 ns) ones.

Power for the card is obtained directly from the expansion bus.

Construction

The hardest part of construction is fabricating the PC board. If you want to build your own PC board, foil patterns are shown in PC Service. You can also purchase a prefabricated PC board from the source shown in the Parts List. The commercial

Note: A refers to an inverted address line and B refers to a non-inverted address line.

PC board has plated-through holes and gold-plated edge connections.

If you make your own board, remember that it's double-sided, so the wires must be soldered on both sides of the board.

After buying or building a board, install the components as shown in Fig. 2. The order of installation is not critical. Just keep polarities straight, and check your work carefully for shorts and opens before installing the board in your PC.

A socket may or may not be necessary for the EPROM. If you

Parts List

Resistors

All resistors are $1 / 4$-watt, 5%, unless otherwise noted.
R1 4700 ohms
R2 220 ohms
R3
10.000 ohms

Capacitor

C1-C	$0.1 \mu F$ disc or monolythic
	30 pF disc

Semiconductors
IC174LS30 8-input
NAND gate

JU1-JU53-pin header with shunt jumper

Ordering Information
The following are available from Renton Products P.O. BOX 16271

Seattle, WA 98116 (206) 6827341

Etched and drilled PC Board with gold-plated fingers \$14.

Complete kit of parts (including programmed EPROM and software on $5^{1 / 4}$ inch diskette) \$34.

Assembled and tested units
$\$ 59$.

Please add $\$ 3 \mathrm{~S} / \mathrm{H}$ to each order. WA residents add 8.1% sales tax.
just want to use the board for security, you may want to solder the EPROM to the board. But you could use the board to prototype your own ROM BIOS extensions, in which case you'd want to use a socket.

Installation

All of the software for PC Access, including a burned EPROM and a copy of the binary file for burning your own EPROM, comes with the kit of parts. (A hex dump of the EPROM is shown in Listing 1.) The software is also available on the RE-BBS (300/1200 8N1, 516-293-2283) in a self-extracting ZIP file called PCACCESS.EXE. You'll need about 160 K of disk space to decompress the file.

The general procedure for installing PC Access is to copy all files to the root directory of the boot drive, add a line to CONFIG.SYS, set the card's address, and then install it.
The easiest way to install the software is to log onto your boot drive (C in most cases), place the distribution diskette in drive A, type A:INSTALL, and then press Enter. Doing so runs a batch file that copies all files into the root directory of drive C, and also makes the needed change to CONFIG.SYS. If you wish to install the software yourself manually, copy SECURITY.BIN and the *.COM files into the root directory. Then add the following line to your CONFIG.SYS file:

DEVICE $=$ SECURITY.BIN
That must be the first line in CONFIG.SYS; do not put any spaces in the line. In addition, don't rename SECURITY.BIN.
The card has five jumpers that determine the address at which the EPROM resides. The default (factory) setting is D8000h, which should be fine for most systems. If there is a conflict, the computer system may not boot. If there are any problems, remove the card and select a new address using Table 1.
After configuring the jumpers, park your hard drive and turn the computer off. Then install the card in any empty slot.
With the card and the software installed, turn the computer on.

Listing $1--P C$ ACCESS EPROM CONTENTS
000000 000010 000020 000030 000040 000050 000060 000070 000080 000090 0000AO оооово 0000co 000000 0000EO 0000FO 000100 000110 000120 000130 000140 000150 000160 000170 000180 000190 0001 AO 000180 0001 co 0001 DO $0001 E O$ 0001 FO 000200 000210 000220 000230 000240 000250 000260 000270 000280

 0002 AO BB 00308 BE DB B9 15008 AA 04 3C 617206

 OOO2EO 10 A3 21108 B C2 BA 0000 F7 361310 A3 2310

 $000360 \quad 10$ OB DB 75 O3 EB OD 908 8B 1 IE 3910 OB DB 7503 000370 EB 0290 CB B4 OF CD 1024 7F B4 00 CD 10 B4 02 000380 B7 00 BA 0002 CD 10 BC CA BE DA BF A5 03 8A 05 000390 OA CO 74 OF 57 1E B4 OE B7 OO B 000зао ооозво
 Ооозво OOO3FO $\quad 45 \quad 3 \mathrm{D} 53055$

 000420 3C $017403 \mathrm{~EB} 08905 \mathrm{~F} \quad 1 \mathrm{~F} 5 \mathrm{~A} \quad 58 \mathrm{~EB} 0 \mathrm{AA} 905 \mathrm{~F} 1 \mathrm{~F}$
 000440 FB B4 OF CD $10 \quad 24$ 7F B4 00 CD 10 B 402 BF 00 BA 0004500002 CD 10 BE 8 CC 04 BC CA BE DA 8 AA 05 OA CO 74 000460 OC 57 B4 OE BB 0001 CD 105 FF 47 EB EA 5D 5E 5F
 $000480 \quad 010036890583 \mathrm{EC} 065 \mathrm{5F}$ B4 80 CF 44726976
 0004 BO

 0004 FO 9B FF 000500 FF FF

The rest of the EPROM consists of FF^{\prime} 's

Fig. 2. PARTS AND JUMPER LOCATIONS. Mount all components as shown here. Table 1 shows how to configure the jumpers for various addresses.

If all has gone well, any floppy disk in drive A will be ignored and you will be prompted for a password. The default master password is SECURITY. You can change the master password and the user passwords with LOCK.COM, and individual passwords with CHANGE.COM.
To uninstall the security system, delete the DEVICE = SECURITY.BIN line from CONFIG.SYS, park the hard drive, turn the computer off, and remove the card.

Software

What follows are brief descriptions of the PC Access utility programs. LOCK.COM and CHANGE.COM are provided to establish the passwords and user ID's. A user can alter his or her own password using CHANGE; the system administrator can use LOCK to change the master password, any user ID, and any user password. You can optionally require users to type in both the user ID and the password each time the system boots. But even if you don't require the user ID to be typed in, the audit trail will \log it.

HOLD.COM allows a user to suspend computer access until the correct password is entered. HOTKEY establishes what key combination triggers the hold function. HOLDOFF.COM removes HOLD.COM from memory.

The FINDROMS program helps locate a free segment in high memory. It searches for the 55AA
pattern that signifies a BIOS extension, and reports on any that it finds.
TRAIL.COM can be executed by AUTOEXEC.BAT to record user ID, access date, and access time. TRAIL should be one of the first programs in AUTOEXEC.BAT (after running any programs needed to update time and date from a real-time clock).
The audit file (a hidden system file) can be decoded by use of AUDIT.COM, as follows:

AUDIT Filename
After you hit the RETURN key, AUDIT will prompt the user for the master password. After the password is entered correctly, AUDIT will decode audit trial entries from the encoded file and append them to the specified file. If no file exists with the given filename, a new file will be created. The audit trail will then be cleared of entries. This function works even if user ID's are not required for system access.

Conclusion

PC Access is inexpensive, easy to build and install, yet nonetheless provides a significant deterrent to unauthorized access to your hard drive.

Additionally, the PC Access circuit board can be used to develop other ROM extensions. Not only does the PC Access give you an inexpensive way to protect your computer, it also provides an excellent flat form that allows you to learn more about how your computer works.

HARDWARE HACKER

continued from page 72
technical library that has a government documents section.
One fed document l've found most useful is the Stand-Alone Photovoltaic Systems-The Handbook of Recommended Design Practices. It's available through Sandia National Laboratories.
There are lots of distributors of alternate-energy products. One of the largest is Real Goods, who also offer a 320-page alternate-energy sourcebook for $\$ 6.50$. Their competitors include Photocomm Inc, the Energy depot, Yellowjacket Solar, and Snow Belt Solar. Get their catalogs.
Two establishment associations that have useful resource availability include the Solar Energy Research Institute and the Association of Energy Engineers. Write for their literature and service lists.
The leading manufacturers of solar panels include Arco Solar, Solarex, Solec, and Solvonics. Two windpower sources include Bergey Windpower and Southwest Windpower.
Finally, two of the alternate-energy "good guys" definitely include Steve Baer of Zomeworks, who is heavy into solar trackers and energy management; plus Jim Allen of SolarJack, who specializes in higher efficiency solar pumps and controllers.

New tech literature

Texas Instruments has released their three volumes of Linear Circuits data books.
TI also has free samples of all their new OTP (one time programmable) EPROM's. They work like.a "real" EPROM, except that they are in a cheaper plastic case and can only get programmed one time. You use them for repeat copies of known-good code.
From NEC, the Digital Signal Processor and Speech Processor data book. And from Silicon Systems, a Microperipheral Products Data Book that covers chips used in floppy disks, hard disks, and cassette tapes.

Free software this month in-
continued on page 83

MARKET CENTER

FOR SALE

PHOTOFACT folders, under \#1400 \$4.00. Others $\$ 6.00$. Postpaid. LOEB, 414 Chestnut Lane, East Meadow, NY 11554
GREAT buys! Surplus prices, ICs, linears, transformers, PS, stepping motors, vacuum pump, phototransistor, meters, LSASE, FERTIK'S, 5400 Ella, Phila., PA 19120.
DESCRAMBLERS. All brands. Special: Combo Jerrold 400 and SB3 $\$ 165$. Complete cable descrambler kit $\$ 39$. Complete satellite descrambler kit $\$ 45$. Free catalog. MJM INDUSTRY, Box 531 , Bronx, NY 10461-0531.
T.V. notch filters, surveillance equipment, brochure \$1.00. D.K. VIDEO, Box 63/6025, Margate, FL 33063. (305) 752-9202.

TUBES: "oldest," "latest." Parts and schematics. SASE for lists. STEINMETZ, 7519 Maplewood Ave. RE, Hammond, IN 46324

CABLE TV DESCRAMBLERS!

BARGAIN HEADQUARTERS!

- JERROLD - TOCOM - HAMUN Oak M35B ONLY $\$ 60$
6 month warranty! We ship C.O.D.I
Lowest retail/wholesale prices!
FREE CATALOG:
Global Cable Network
1032 Irving St. Suite 109 S.F., CA 94122

ORDER TODAY! 800-327-8544

LASER Listener II, other projects. Surveillance, descrambling, false identification, information. Plans, kits, other strange stuff. Informational package $\$ 3.00$ refundable. DIRIJO/BOND ELECTRONICS, Box 212, Lowell, NC 28098.
ENGINEERING software, PC/MSDOS. Hobbyists - students - engineers. Circuit design $\$ 59.00$, FFT analysis $\$ 69.00$, Mathematics $\$ 49.00$, Logic Simulation $\$ 49.00$, Circuit Analysis $\$ 29.00$. Free catalog, (614) 491-0832, BSOFT SOFTWARE, 444 Colton Rd., Columbus, OH 43207.

RESTRICTED technical information: Electronic surveillance, schematics, locksmithing, covert sciences, hacking, etc. Huge selection. Free brochures. MENTOR-Z, Drawer 1549, Asbury Park, NJ 07712.

DESIGN and build your own computerized product! New manual makes it easy! Includes introduction to design, choosing the proper CPU, comparison between many CPUs and microcontrollers, component suppliers, sample schematics, programming, debugging, hints, tips, and more! 'Simple step-by-step details from idea to finished product. $\$ 8.00$ complete, satisfaction quaranteed, details free, TRAVCO, 107 E . Vallette, Suite 1301A, Elmhurst, IL 60126.

RENTAL movie stabilizer. Connect between VCRs or to monitor. Satisfaction guaranteed. $\$ 69.95$, $\$ 4.00$ handling. 1 (800) 367-7909.

MEMORY chips, Simms and Sipps: 4164-100 $\$ 2.00,41256-100 \$ 2.55,41464-100 \$ 3.25$. Call ED/ DATAFIX, (201) 322-7666.

CLASSIFIED AD ORDER FORM

To run your own classified ad, put one word on each of the lines below and send this form along with your check to:
Radio-Electronics Classified Ads, 500-B Bi-County Boulevard, Farmingdale, NY 11735
PLEASE INDICATE in which category of classified advertising you wish your ad to appear. For special headings, there is a surcharge of $\$ 25.00$.
() Plans/Kits () Business Opportunities () For Sale
\} Education/Instruction () Wanted () Satellite Television
()
Special Category: $\$ 25.00$
PLEASE PRINT EACH WORD SEPARATELY, IN BLOCK LETTERS.
(No refunds or credits for typesetting errors can be made unless you clearly print or type your copy.) Rates indicated are for standard style classified ads only. See below for additional charges for special ads. Minimum: 15 words.

We accept MasterCard and Visa for payment of orders. If you wish to use your credit card to pay for your ad fill in the following additional information (Sorry, no telephone orders can be accepted.):
Card Number Expiration Date

Please Print Name
Signature

IF YOU USE A BOX NUMBER YOU MUST INCLUDE YOUR PERMANENT ADDRESS AND PHONE NUMBER FOR OUR FILES. ADS SUBMITTED WITHOUT THIS INFORMATION WILL NOT BE ACCEPTED. CLASSIFIED COMMERCIAL RATE: (for firms or individuals offering commercial products or services) $\$ 3.10$ per word prepaid (no charge for zip code)...MINIMUM 15 WORDS. 5% discount for same ad in 6 issues; 10% discount for same ad in 12 issues within one year; if prepaid. NON-COMMERCIAL RATE: (for individuals who want to buy or sell a personal item) $\$ 2.50$ per word, prepaid....no minimum. ONLY FIRST Indiduals who want to in old caps at no extra charge. Additional bold face (not available as all caps) 55 c per word additional. Entire ad in boldface, $\$ 3.70$ per word. TINT SCREEN BEHIND ENTIRE AD: $\$ 3.85$ per word. TINT SCREEN BEHIND ENTIRE AD PLUS ALL BOLD FACE AD: $\$ 4.50$ per word. EXPANDED TYPE AD: $\$ 4.70$ per word prepaid. Entire ad in boldface, $\$ 5.60$ per word. TINT SCREEN BEHIND ENTIRE EXPANDED TYPE AD: $\$ 5.90$ per word. TINT SCREEN BEHIND ENTIRE EXPANDED TYPE AD PLUS ALL BOLD FACE AD: $\$ 6.80$ per word. DISPLAY ADS: $1^{\prime \prime} \times 21_{4^{\prime \prime}}-\$ 410.00 ; 2^{\prime \prime} \times 21_{4}^{\prime \prime}-\$ 820.00 ; 3^{\prime \prime} \times$ $21 / 4^{\prime \prime}-\$ 1230.00$. General Information: Frequency rates and prepayment discounts are available. ALL COPY SUBJECT TO PUBLISHERS APPROVAL. ADVERTISEMENTS USING P.O. BOX ADDRESS WILL NOT BE ACCEPTED UNTIL ADVERTISER SUPPLIES PUBLISHER WITH PERMANENT ADDRESS AND PHONE NUMBER. Copy to be in our hands on the 10th of the third month preceding the date of the issue. (i.e., Aug. issue copy must be received by May 10th). When normal closing date falls on Saturday, Sunday or Holiday, issue closes on preceding working day. Send for the classified brochure. Circle Number 49 on the Free Information Card.

ASSEMBLE YOUR OWN COMPUTER FOR LE\$\$

10 MHz 8088 Compatible Kit \qquad 4.77/10 MHz 8088 Mothorboard -258kB RAM (640 KB max)
150W Power Supply

- Floppy Disk Controller - One $5 \frac{1}{4^{\prime}} 360 \mathrm{~KB}$ Drive

MonoGraphics Card w/ P
101 Kay Koyboard

- Case (3LED,2Button,Koy)
- $12^{\prime \prime}$ Amber Mono Monitor

Installation Guido \& Mar Lua

12 MHz 80286 Compatible Kit \qquad 12 MHz 80288 Motherboard - 512 KB RAM (4 MB max)

200W Power Supply

- Floppy Disk Controiler
- One $5 \frac{1}{4^{\prime}} 1.2 \mathrm{MB}$ Drive

MonoGraphics Card w/ P
101 Kay Kayboard

- Case (3LED,2Button,Kay)
- $12^{\prime \prime}$ Amber Mono Monitor

Instaliation Guido \& Manua

20 MHz 80386 Compatible Kit \qquad
All Componants Fully Tested Bofore Ship
One Year Warranty on All Parts
Installation Available at No Extra Charge II!
ISA \& M/C add 3\% Amox add 4\%
Price \& Quantly subject to change without prior notice
15% Restocking Fee on All Non-Defective Hems

JINCO COMPUTERS INC. 5122 WALNUT GROVE AVE. SAN GABRIEL, CA 91776
 Tel: (818) 309-1108
 Fax: (818) 309-1107

CIRCLE 179 ON FREE INFORMATION CARD

CB RADIO OWNERS!

We specialize in a wide variety of technical information, parts and senvices for CB radios. 10-Meter and FM conversion kits, repair books, plans, high-performance accessories. Thousands of satisfied customer since 1976! Catalog \$2.

CBC INTERNATONAL

P.O. BOX 31500RE, PHOENIX, AZ 85046

CABLE TV, best SSAVI's, Tocom's and filters in the business. We build all our own equipment, no middleman. Upgrade your SSAVI to a super SSAVI with our PAL kit. Quantity and dealer pricing. We ship COD - call to get on our mailing list. 1 (800) 426-9063. COPA ELECTRONICS.

COMMUNICATIONS/electronic equipment sales, service, FCC licensed, free catalog RAYS, PO Box 14862, Fort Worth, TX 76117-0862.

CABLE TV converters and descramblers discount center! Jerrold, Tocom, Hamin, Oak, Scientific Atlanta, Zenith. Quantity discount, order yours foday! 1 (800) 962-6836.

FREE GATALOG
 FAMOUS "FIRESTIK" BRAND CB ANTENNAS AND ACCESSORIES. QUALITY PRODUCTS FOR THE SERIOUS CB'er. SINCE 1962 FIRESTIK ANTENNA COMPANY 2614 EAST ADAMS
 PHOENIX. ARIZONA 85034

SAM'S photofacts set 1091 - 2660 minimum price $\$ 1500$. HENNEPIN TECHNICAL COLLEGE, 9000 Brooklyn Blvd., Brooklyn Park, MN 55445. (612) 425-3800. Ade Olson.

Each

Each

100

Each

Hours open 10:00 am to 4:00 pm Eastern time Minimum order 5 units 55.00 ea. Dealers wanted. We ship COD.

King Wholesale

 1-800-729-0036Fax number 6173400053
'No one beats the King's prices!'
DESCRAMBLERS

One match can burn 3,000,000 trees.

Cond $\frac{30}{7}$

CABLE TV converters: Jerrold, Oak, Scientific Atlantic, Zenith \& many others. "New MTS" stereo add-on: mute \& volume. Ideal for 400 and 450 owners! 1 (800) 826-7623, Amex, Visa, M/C accepted. B \& B INC., 4030 Beau-D-Rue Drive, Eagan, MN 55122.
DESCRAMBLERS, top brands, lowest prices, fast service, best warranty, technical support, COD ok example, Tocom with remote $\$ 199.00$, R.T.C. -56 with remote $\$ 150.00$, call now, we have SA-3. Tri-Bi Hamlin, Pioneer in stock. MOUNT HOOD ELEC TRONICS, (206) 896-6837.

TUBES, new, up to 90% off, SASE, KIRBY, 298 West Carmel Drive, Carmel, IN 46032
CABLE TV converters and descramblers. We sell only the best. Low prices. SB-3 \$79.00. We ship C.O.D. Free catalog. ACE PRODUCTS, PO Box 582, Dept. E, Saco, ME 04072. 1 (800) 234-0726.

SAMS closeout sale. \#2 to \#2600 \$6.00 each postpaid. MC/Visa. Call 1 (800) 274-2081. 9-5 CST.

CABLE converters, descramblers, Tocom-w/r $\$ 199.00$, Oak R.T.C. -56 -w/r $\$ 150.00$, Jerrold-400w/r \$125.00, Hamlin-6600-w/r \$145.00, Zenith-w/r $\$ 225.00$, SA-3 $\$ 99.00$, Tri-Bi $\$ 89.00$, Pioneer $\$ 135.00$, MLD-1200 $\$ 45.00$, all in stock with full warranty, COD orders welcome, nobody can beat our quantity prices, full tech support. S.A.C., info (702) 647-3799 orders 1 (800) 622-3799.

FINALLY a digital technology course for everyone! Technicians, supervisors and managers! Free details. TEKNOWLEDGY SOURCES, RE004, Box 1284, League City, TX 77573.

TJ SERVICES is here to serve you! Our quality products, quick courteous service, knowledgeable sales people and rock bottom prices prove it! Not sure what you need? Call (313) 979-8356 we'll help We specialize in Jerrold, Hamlin, interferance filters and most SA equipment.
CABLE TV descramblers M35B. Top quality. Tested, guaranteed, vari-sync available. Dealers want ed. \$39.00. 1 (800) 648-4600.
ELECTRONIC test equipment and parts. Free illustrated catalog. EF ELECTRONICS, PO Box 326, Aurora, IL 60507.
DESCRAMBLERS. - For free catalog contact CABLE CONNECTION, 1304 E. Chicago Street, Suite 301, Algonquin, IL 60102. (708) 658-2365.
FEBRUARY 1984 complete parts with power supply. $\$ 38.00$. Postpaid. JIM RHODES, INC., Box 3421, BristoI, TN 37625.

PROGRAMMABLE stepper motor drive \& control for under $\$ 100$, IBM PC/XT compatible, Commodore 64, or other with 25 pin parallel port. PCB interface, \& software. Send for detailed literature to: MASE, R.D. \#2 Box 166, Mohrsville, PA 19541.
TOCOM converters w/r from $\$ 199.00$. Tocom super chips turn on everything $\$ 69.00$ each Phone (219) 935-4128.

SURVEILLANCE - Privacy control - debugging - protection. (kits - assembled) large new catalog $\$ 5.00$. TRI-TRON, 2209F Lapalco, Harvey, LA 70058.

INTEGRATED circuits data books, business SASE for list. FRAZIER, Box 972, Windermere, FL 34786.
SECRET new hair growing formula you can make Really works. Free information NATURAL HAIR PO Box 0963, Paragould, AR 72451-0963.
COMPUTER interconnection products. Free 100 page catalog qualified buyers. L-COM, 1755 Os good, North Andover, MA 01845.

Unlock the Mystery of

 the Automobile Computer!
Bulld Your Own Diagnostic Scan Tool

The Key To Understanding the Modern
Access Stored ECM Data, Read-Out Fault Engine Challonging NEW Electronic Assembly KIT-PLANS-PARTS-ASSEMBLED/TESTED UNITS, Call 1-800-535-3091 or write for complete information S\& M Electro-Tech P.O. Box 34334 Blaine, MN 55434

SECURE-64 programmable security system using your Commodore 64. Write B.R.V., 14732 Currency Baton Rouge, LA 70817. (504) 296-5227.
C WORKSHOP tutorial software teaches you C lanquage. Feedback on $100+$ programming exercises. Editor, compiler and our coordinated 384 -page book included. MS/DOS. $\$ 69.95+\$ 5.00$ S/H. V/MC/AE check. 1 (800) 762-8003 9-5 PDT. WORDCRAFT, 3827 Penniman Ave., Oakland, CA 94619.
SURPLUS ELECTRONICS. New giant wholesale catalog. Hundreds of amazing bargains. \$2. Box 840, Champlain, NY 12919.

BESTBYMAIL
 Rates: Write National, Box 5, Sarasota, FL 34230 OF INTEREST TO ALL

ADVERTISE YOUR IDEA! Inventor's Newsletter. Box 477, Mangum, OK 73554.
HOME WORKERS NEEDED. Make money. 900 directories, addresses. $\$ 10.00$. Nationals, RT. \#3-M, Waseca, MN 56093
NASHVILLE RECORD COMPANY interviewing Country Singers to record. Call 615-883-5349.

FINANCIAL
NEED CREDIT? $\$ 2,500$ + Gold Card. No deposit. No turn downs. Also MasterCard. 1(602)420-1486.
FREE DETAILS. LOANS. Visa/MasterCard. Guaranteed. No credit checks. Jameson, Box 40160(RE), Bakersfield, CA 93384.

PLANS AND KITS

BUILD this five-digit panel meter and square-wave generator including an ohms, capacitance and frequency meter. Detailed instructions $\$ 2.50$. BAGNALL ELECTRONICS, 179 May, Fairfield, CT 06430 .
MINIATURE FM transmitters! Tracking transmitters Voice disguisers! Bug detectors! Phone Devices! More! Available in kits or assembled! Catalog $\$ 1.00$ XANDI ELECTRONICS, Box 25647, Dept. 60C Tempe, AZ 85285-5647.
RADIO Astronomy! Monthly magazine, books, components. $\$ 3.00$ brings sample package. BOB'S ELECTRONIC SERVICE, 7605 Deland, Ft. Pierce, FL 34951

REMOTE CONTROL KEYCHAIN

Complete w/mini-transmitter and +5 vdc RF recaiver Fully assembled including plans Quantify discounts available 24.95 Check, Visa or M/C $\$ 24.95$ Adeck, Visa or M/ VISITECT INC. IDept, R (415) 872-0128 PO BOX 5442, SO. SAN FRAN., CA 94080

INVESTIGATORS, experimenters - Quality new plans. Hard to find micro and restricted devices. Free catalog. Self addressed stamped envelope to KELLEY SECURITY INC., Suite 90, 2531 Sawtelle Blvd., Los Angeles, CA 90064
CB Tricks II book. Power amplifier design and theory, UHF CB tune ups. Send \$19.95 MEDICINE MAN CB, PO Box 37, Clarksville, AR 72830.
DETECTION - Surveillance, debugging, plans, kits, assembled devices. Latest high-tech catalog \$5. DETECTION SYSTEMS, 2515 E. Thomas, \#16-864F, Phoenix, AZ 85016.
DESCRAMBLING, new secret manual. Build your own descramblers for cable and subscription TV. Instructions, schematics for SSAVI, gated sync, sinewave, (HBO, Cinemax, Showtime, UHF, adult) $\$ 8.95$, $\$ 2.00$ postage. CABLETRONICS, Box $\$ 8.95, \$ 2.00$ postage. CABLETRONICS, Box 30502R, Bethesda, MD 20824.

Pacific Cable Company, Inc.

7325½ RESEDA BLVD., DEPT. R-4 • RESEDA, CA 91335 (818) 716-5914 • No Collect Calls • (818) 716-5140

IMPORTANT: WHEN CALLING FOR INFORMATION Please have the make and model \# of the equipment used in your area. Thank You

UNICORN YOUR I.C. SOURCE COLLIMATOR PEN

A low power collimator pen containing a MOVPE grown gain guided GaAIAs laser. This collimator pen delivers a maximum CW output power of 2.5 mW at $25^{\circ} \mathrm{C}$.
These collimated laser sources are designed for industrial applications such as data retrieval,
telemetry, alignment etc.
The non-hermetic stainless steel encapsulation of the pen is specifically designed for easy alignment in an optical read or write system, and consists of a lens and a laser device. The lens system collimates the diverging laser light. The wavefront quality is diffraction limited.
The housing is circular and precision manufactured with a diameter of 11.0 mm and an accuracy between + and $-11 \mu \mathrm{~m}$.
UST PAIEE $\$ 180.00$ PRICE $\$ 39.99$
Quality Components - Low Prices Since 1983 LASER DIODE

Designed for general industrial low power applications such as reading optical discs, optical memories, bar code scanners, security systems, alignment etc.
The gain guided laser is constructed on a n type gallium arsenide substrate with a Metal Organic Vapor Phase Epitaxial process (MOVPE). The device is mounted in an hermetic SOT148D (diameter 9.0 mm) encapsulation.
The SB1053 is standard equipped with a monitor diode, isolated from the case and optically coupled to the rear emitting facet of the laser. This fast responding monitor diode can be used as a sensor to control the laser optical output level.

UST PRHE \$38.00 PRICE $\$ 9.99$
 We Carry A Full Line of Components
 CALL FOR FREE CATALOG
 EPROMS

STOCK \#	PIMS	OESCRIPTION	1.24	25.99	$100+$
1702	24	256×4 n	399	3.79	3.41
2708	24	$1024 \times 8450 n 5$	579	550	4.95
2758	24	1024×8450 ns	3.99	379	3.41
2716	24	$2048 \times 8450 \mathrm{~ns}(25 \mathrm{~V})$	319	3.03	273
2716-1	24	2048×8350 ns (25v)	3.39	3.22	2.90
TMS2716	24	2048×8450 ns	629	598	538
27 C16	24	2048×8450 ns (25v-CMOS)	359	341	3.07
2732	24	4096×8 450n5 (25v)	3.79	3.60	3.24
2732A-2	24	$4096 \times 8200 n s$ (21V)	3.79	3.60	3.24
2732A	24	$4056 \times 8250 \mathrm{~ns}$ (21V)	3.69	351	3.16
2732A-4	24	4096×8 450ns (21v)	309	294	2.65
TMS2532	24	4096×8 450ns (25v)	579	5.50	4.95
27 c32	24	$40996 \times 8450 n 5$ (25V-CMOS)	4.19	3.98	3.58
2764.20	28	8192×8200 ns (21V)	3.99	3.79	3.41
2784	28	$8192 \times 8250 \mathrm{~ns}$ (21v)	3.59	3.41	3.07
2784 -20	28	$8192 \times 8200 \mathrm{~ns}(12.5 \mathrm{~V})$		3.79	3.41
27844	28	$8192 \times 8250 \mathrm{~ns}(12.5 \mathrm{~V})$	3.59	3.41	3.07
TMS2564	28	$8192 \times 8250 n 5(25 \mathrm{~V})$	6.79	6.45	5.81
27128.20	28	$16.384 \times 8200 n 5(27 \mathrm{~V})$	5.79	5.50	4.95
27128	28	$16,384 \times 8250 n s(21 v)$	4.79	4.55	4.10
271212	28	$16.384 \times 8250 n s$ (21v)	539	5.12	
27256-20	28	32.768×8200 ns (12.5v)	5.99	5.69	5.12
27256	28	32.768×8250 ns (125v)	4.99	4.74	4.27
272556	28	$32.768 \times 8250 \mathrm{~ns}$ (12.5V.CMOS)	5.99	5.69	5.12
27512.20	28	$65,536 \times 8$ 200ns (12.5v)	10.49	9.97	8.97
27512	28	$65.536 \times 8250 \mathrm{~ns}$ (12.5v)	9.49	9.02	8.12
27 c 12	28	$65.536 \times 8250 \mathrm{~ns}$ (125V-CMOS)	9.99	9.49	854
$27 \mathrm{Cl1024}$	32	$131.072 \times 8200 n 5$ (12.5V-CMOS)	2799	26.59	23.93
68764	24	$8192 \times 8450 \mathrm{~ns}$	1899	18.04	1624
58766	24	8192×8450 ns	1599	15.19	13.67

SING WITH THE WORLD'S BEST BANDS!
An Unlimited supply of Backgrounds from standard stereo records! Record with your voice or perform live yet connects easily to a home component stereo. This unique product is manufactured and sold Exclusively by LT Sound - Not sold through dealers. Call or write for a Free Brochure and Demo Record.
LT Sound, Dept.RL-3,7980 LT Parkway Lithonia, GA 30058 (404) 482.4724 Manufactured and Sold Exclusively by LT Sound
24 HOUR HONE DEMOLINE(404) 482.2485

BUILD remote controlled robot, plans, electronic kits, free details, ROBOT WORK'S, Box 1979, Colorado Springs, CO 80901.
CATALOG: hobby/broadcasting/HAM/CB: Cable TV, transmitters, amplifiers, surveillance devices, computers, more! PANAXIS, Box 130-F4, Paradise, CA 95967.
SURVEILLANCE transmitter kits are available to professional City, State and Government law enforcement agencies that operate on frequencies they prefer. Our transmitters have proven generally to outperform theirs. Four models of each; telephone, room, combination telephone/room transmitters tune from 65 to 305 MHz . Send $\$ 1.00$ (overseas airmail $\$ 2.00$) for catalog. Included is Popular Communications book review of "Now Hear This! Electronics Eavesdropping Equipment Design" by Winston Arrington. Book contains 58 transmitter schematics. SHEFFIELD ELECTRONICS, 7223 Stony Island Ave., Chicago, IL 60649-2806.

NEW HE NE LASER TUBES \$35
 Dealer Inquiries Invited. Free Catalog!

MEREDITH INSTRUMENTS: 6403 N. 59 th Ave. Glendale, AZ 85301 - (602) 934-9387
'The Source for Laser Surplus'
SINGERS. At last, build your own vocal filter. Remove lead vocals from standard stereo records, CDs, tapes, FM broadcasts, so you can be the lead singer of your favorite band. Schematic/theory $\$ 6.95$. WEEDER TECHNOLOGIES, 14773 L6.95. WEEDER Mt. Orab, OH 45154.

KITS Preamplifiers, amplifiers, antenna amplifier, alarm, dice, power meter, VU meter, motion detecalarm, dice, power meter, vu meter, motion detec-
tor, siren, chime, door bell, timers and trainers. Catator, siren, chime, door bell, timers and trainers. Cata-
log: ARLI ELECTRONICS, 2155 Verdugo BIvd. \#22, Montrose, CA 91020.
STRESSED out? Relaxation technique easily learned with the aid of a simple electronic device Not hypnosis! Plans $\$ 9.95$. BLUE CHIP ENGINEERING, Dept. 33, PO Box 1100, Walnut, CA 91789.

SURVEILLANCE schematics. Easy to build. Bug detector $\$ 5.00$, FM transmitter $\$ 5.00$, phone snoop $\$ 5.00$, all three $\$ 12.95$, $\$ 1.00$ postage. CABLETRONICS, Box 30502R, Bethesda, MD 20824.

PROJECT supplies - tools - motors - casting etc.. Catalog $\$ 1.00$ INVENTORS HARDWARE, Box 8460-R, Anaheim, CA 92812
ROBOTS. 44 kits and plans to build. Catalog $\$ 1.00$ MUSEUM OF ROBOTICS STORE, 4026 MLK JR. Way, Oakland, CA 94609

CIRCUIT design software: filters, amplifiers crossovers, oscillators, timers and more! Disk and documentation \$19.95. PC/MSDOS. Info \$1.00. BRUTECH, Box 596, Welland, Ontario, Canada L3B 5R3.
RECHARGE toner cartridges used in laser printers and personal copiers. Earn $\$ 50.00$ per hour. 1 (800) 221-3516. 62 N. Coleman Road, Centereach, NY 11720.

TALKING voltmeter! Microprocessor controlled! Build yours under $\$ 20.00$. No experience necessary with microprocessors. Send self addressed/stamped envelope to: DIGITAL DREAMS, Box \#4192, Huntington Beach, CA 92605.
UNIVERSAL IC, component tester! Plans $\$ 5.00$ US. Catalog $\$ 1.00$ QUANTUM RESEARCH, 17919-77 Avenue, Edmonton, Alberta T5T 2S1.

MULTI CHANNEL MICROWAVE ANTENNAS - CRYSTAL CONTROLLED MICROWAVE ANTENNAS FOR OVER THE AIR CABLE SYSTEMS (WIRELESS CABLE)

- CONVERTERS AVAILABLE FOR ZENITH SYSTEMS CATALOG \& INFO: (203) 975-7543

VIDEO-LINK ENTERPRISES
 520 GLENBROOK RD., SUITE 202, STAMFORD CT 06906

SATELLITE TV

FREE catalog - Do-it-yourself save 40-60\%. Lowest prices worldwide, systems, upgrades, parts, all major brands factory fresh and warrantied. SKYVISION, INC., 2009 Collegeway, Fergus Falls, MN 56537. 1 (800) 334-6455.

DESCRAMBLER: Build our low cost video only, satellite TV descrambler for most satellite channels. Uses easy to get, everyday parts. Board \& plans Uses easy to get, everyday parts. Board \& plans
$\$ 35.00$ US funds. Board, plans \& parts $\$ 99.00$ US funds. Wired \& tested unit \$189.00 US funds. Send check, money order or Visa to: VALLEY MICROWAVE ELECTRONICS, Bear River, Nova Scotia, Canada B0S 1 B0 or phone (902) 467-3577. 8am to 4 pm eastern time. Note: educational project only. Not to be used illegally.

CABLETV DESCRAMBLER LIQUIDATION!

- Major Makes \& Models!
- Will match or beat anyone's prices!
- Dealer discounts at 5 units!
- Examples:

HAMLIN COMBOS . \$44 ea. (Min. 5)
OAK ADD/ON \$40 ea. (Min. 5)
OAK M35B
$\$ 60$ ea. (Min. 5
WEST COAST ELECTRONICS
For Information: 818-709-1758
Catalogs \& Orders: 800-628-9656

VIDEOCYPHER II descrambling manual. Schematics, video and audio. Explains DES, EPROM, CloneMaster, 3Musketeer, pay-per-view (HBO, Cinemax, Showtime, adult, etc.) $\$ 13.95, \$ 2.00$ postage. Collection of Software to copy and alter EPROM codes, $\$ 25$. CABLETRONICS, Box 30502R, Bethesda, MD 20824.
DESCRAMBLERS for movies, networks, $\$ 175$, video only, $\$ 450$ complete. Visa, MC accepted. Cata$\log \$ 4.00$. SKYWATCH, 238 Davenport Road, Toronto, Canada, M5R 1J6.
SATELLITE printout for your location $\$ 7.95$. DATABANK RESEARCH, PO Box 261, Westmont, L 60559.
PAY TV and satellite descrambling 1990 edition. Our best yet. More descrambling circuits, turn-ons, schematics, countermeasures, counter-counter measures. only $\$ 14.95$. Scrambling News monthly $\$ 19.95 / \mathrm{yr}$. Sample $\$ 3.00$. New indexed catalog $\$ 1.00$. COD's are ok (716) 874-2088. SCRAMBLING NEWS, 1552 W. Hertel Ave., Buffalo, NY 14216.

VIDEOCIPHER II manuals. Volume 1 - hardware Volume 2 - software. Either \$32.45. Volume 3 projects/software - $\$ 42.45$. Volume 4 - repair projects/software - $\$ 42.45$. Volume 4 - repair -1.
$\$ 97.45$. Volume 5 documentation - $\$ 42.45$. Cable $\$ 97.45$. Volume 5 documentation - $\$ 42.4$. Cable
Hacker's Bible - $\$ 32.45$. Clone Hacker's Bible Hacker's Bible - $\$ 32.45$. Clone Hacker's Bible-
$\$ 32.95$ CODs:
(602) $782-2316.220+$ Megabytes IBM-PC/XT software - catalog- $\$ 3.00$. TELECODE, Box 6426-RE, Yuma, AZ 85366-6426.
CABLE TV secrets - the outlaw publication the cable companies tried to ban. HBO, Movie Channel Showtime, descramblers, converters, etc. Sup pliers list included. \$8.95. CABLE FACTS, Box 711 R, Pataskala, OH 43062.
ATLANTIC GROUP ENTERPRISES INC. Buy sat ellite equipment. Dealing directly with the seller. We can show you how. Toll free 1 (800) 446-4039.

SOFTWARE

FREE software for IBM and compatibles! Info \$1.00. BLUE CHIP ENGINEERING, Dept. 33, PO Box 1100, Walnut, CA 91789.

FREE CATALOG! 1-800-648-7938 For allintormaion 1.702:362:3026 JERROLD HAMLIN OAK ETC. CABLETV DESCRAMBLERS
 Compare our low Low Retail Prices! - Guaranteed Prices \& Warranties! Orders Shipped Immediately! REPUBLIC CABLE PRODUCTS INC. 4080 Paradise Rd. \#15 Dept. RE-90 E. Las Vegas, NV 89109

EDUCATION \& INSTRUCTION

MAGIC! Four illustrated lessons plus inside information shows you how. We provide almost 50 tricks including equipment for four professional effects. You get a binder to keep the materials in, and a one year membership in the International Performing Magicians with a plastic membership card that has your name gold-embossed. You get a one-year subscription to our quarterly newsletter "IT's MAGIC!" Order now! $\$ 29.95$ for each course $+\$ 3.50$ postage and handling. (New York residents add applicable state and local sales tax). THE MAGIC COURSE, 500-B BiCounty Boulevard, Farmingdale, NY 11735.

LEARN IBM PC assembly language. 80 sample programs. Disk \$5. Book \$18. ZIPFAST, Box 12238, Lexington, KY 40581-2238.
INSTANTANEOUSLY reduce stereo volume. Device mutes stereo while phone in use. PC board complete instructions only \$14.95. TRIAD TECHNOLOGIES, 7184 Manchester, St. Louis, MO 63143-2408.

CABLE TV DESCRAMBLERS

 *NEW STARGATE 2000 CABLE CONVERTER

1-\$89.00 10-\$69.00 100-Call Last channel recall-Favorite channel select75 channel-Channel scan-Manual fine tuneOne year warranty-surge protection-HRC \& Standard switchable and much more. Call Today!
INFORMATION(402)554-0417
Orders Call Toll Free 1-800-624-1150
M.D. ELECTRONICS

115 NEW YORK MALL SUITE 133E
OMAHA, NE. 68114 MSA

CIRCLE 53 ON FREE INFORMATION CARD

EMINENCE Thintsine
(M) MOTOROLA Polydax

1-800-338-0531
 @ PIONEER

3-WAY 100W CROSSOVER

$12 \mathrm{~dB} /$ octave rolloff. $800 \mathrm{~Hz}, 5000 \mathrm{H}$ chms 100 points. 8 ohm. 100 watts RMS		
\#260-210	$\begin{gathered} \$ 12.50 \\ (1-9) \end{gathered}$	$\begin{aligned} & \$ 9.95 \\ & (10-\mathrm{up}) \end{aligned}$
SPEAKER CONTROL		
PANEL		
Panel wit 50 war L-pads		
and built-in LED powe		
meterer $5^{5} \times 2 \times 12^{2} 100$		
\#260-235	(1-5)	(6-up)

12" POLY WOOFER

Super duty, 40 oz . magnet. 100 watts RMS, 145 watts max. 4 and 8 ohm compatible (6 ohm). ${ }^{\prime}$ ' voice coil. fs $=25 \mathrm{~Hz}, \mathrm{QTS}=.166$, $\mathrm{VAS}=10.8 \mathrm{cu} \mathrm{ft}$. Response: $25-1500 \mathrm{~Hz}$. Net weight: 9 lbs . Pioneer

\#290-125	$\$ 36.80$
$(1-3)$	\(\underset{\substack{\$ 34.50

(4-up)}}{\$ 2}\)

WALNUT SPEAKER CABINET KIT

Super quality, genuine walnut veneer cabinet. Kit includes: routed and mitred top, sides, and bottom in unfinished $3 / 4^{n}$ walnut veneer. Cut your own custom holes in the front and rear to match and rear to match $24^{\prime \prime} \times 11^{\prime \prime}$. Volume: $24^{\prime \prime} \times 11^{\prime \prime}$. Volu
1.9 cubic feet.
\#260-350 \quad \$22.50 $\quad \$ 19.95$
PIONEER HORN TWEETER Mylar dome. 2.93 oz . barium ferrite magnet. ohm. Response: 1800 20000 Hz . 35W RMS, 50 W max. is $=2000 \mathrm{~Hz}$ $\mathrm{SPL}=106 \mathrm{~dB}$. Pioneer \#AHE60-51F

12" SUB WOOFER		
Dual voice coil sub woofer.		
300 z. magnet, 27 voice		
watts max. ff $=25 \mathrm{~Hz}$. 6 ohm		
(4 and 8 ohm compatible).SPL $=89 \mathrm{~dB} 1 \mathrm{~W} / \mathrm{IM}$.		
Respose $25-700 \mathrm{~Hz}$.ReTS $=31 . \mathrm{VAS}=10.3 \mathrm{cu} . \mathrm{ft}$.		
Pioneer \#A30GU30.55D.		
\#290-145	$\$ 39.80$	$\$ 36.80$

15" THRUSTER WOOFER Thruster by Eminence. Made in USA. Poly foam surround, 56 oz . magnet. 2-1/2", 2 layer voice coil. 150 watts RMS, 210 watts | max. 4 ohm. |
| :--- |
| Hz, OTS $=23.5$ | $\mathrm{Hz}, \mathrm{QTS}=33, \mathrm{VAS}=17.9$

$\mathrm{cu} \mathrm{ft} . \mathrm{SPL}=94.8 \mathrm{~dB} \mathrm{lW} /$ IM. Net weight: 15 lbs .
\#290-180 $\begin{array}{lll}\$ 43.50 & \$ 39.80 \\ (1-3) & \$(4-8)\end{array}$
GRILL FRAME KIT

18" EMINENCE WOOFER MADE IN USA
100 oz . magnet, $3^{\prime \prime}$ voice coil. 250 watts RMS, 350 watts max. $8 \mathrm{ohm}, 30 \mathrm{~Hz}$ resonant frequency. 22 2700 Hz response.
Efficiency: $95 \mathrm{~dB} 1 \mathrm{~W} / 1 \mathrm{M}$. Paper cone, treated accordian surround. Net weight: 29 lbs .

\#290-200

$$
\$ 98.90
$$

\$89.50
TITANIUM COMPOSITE TWEETER

ustomers, please call for shipping estimate on orders exceeding

VIDEO-LINK Enterprises, Inc.

520 GLENBROOK RD., SUITE 202 STAMFORD, CT 06906
ORDERS: 1-800-622-9022
CATALOG \& INFO: 203-975-7543
MONDAY - FRIDAY 10 AM - 5:30 PM, E.S.T.
IMPORTANT: Have make and model \# of the equipment used in your area.

$\boldsymbol{m} \boldsymbol{m} \boldsymbol{m}=$ | | | |
| :--- | :--- | :--- | :--- | :--- |
| | | |
| | | |
 NO CONNECTICUT SALES, It
 is not the intent of VDEO-LINK
 to defraud any pay television operator and we will not assist any company or individual in doing so.
 PLEASE PRINT:
 SUBTOT.
 Shipping $\$ 3$ Unit
 \$3/Unit
 \square CASHIER'S CHECK
 \square M.O C.O.D
 NAME

ADDRESS
CITYSTATE/ZIP
PHONE
SIGNATURE
WAIVER. Since I, the undersigned, fully understand that the ownership of a cable decoder does not give the owner of the decoder the right to decode or view premium cable channels withou proper authorization from their local cable company hereby declare under penalty of perjury that all products purchased, at any time, will only be used on cable TV systems with proper authorization from local officials or cable company officers in accordance with all applicable federal and state laws. Federal and various state laws provide for substantial criminal and civil penalties for substantial crim
unauthorized use.

Dated
Signed:
CIRCLE 64 ON FREE INFORMATION CARD

BE a recording engineer; Train at home for high paying - exciting careers. Free information. AUDIO INSTITUTE, 2174 Union St., Suite 22K, San Francisco, CA 94123.

BUSINESS OPPORTUNITIES

EASY work! Excellent pay! Assemble products at home. Call for information. (504) 641-8003 Ext. 5192.

MAKE $\$ 50 / \mathrm{hr}$ working evenings or weekends in your own electronics business. Send for free facts. INDUSTRY, Box 531, Bronx, NY 10461.
YOUR own radio station! AM, FM, TV, cable. Licensed/unlicensed. BROADCASTING, Box 130 F4, Paradise, CA 95967
INVENTIONS, ideas, technology wanted for presentation to industry/exhibition at national innovation exposition. Call 1 (800) 288-IDEA.
LET the government finance your small business. Grants/loans to $\$ 500,000$. Free recorded message: (707) 449-8600. (KS1).

MECHANICALLY inclined individuals desiring ownership of small electronics manufacturing busi-ness-without investment. Write: BUSINESS-R, 826 Merrick Road, Baldwin, NY 11510.

All Jerrold, Oak, Hamlin, Zenith, Scientific Atlanta, Magnavox and all specialized cable equipment available for shipment within 24 hours. For fast service MC / VISA or C.O.D. telephone orders accepted (800) 648-3030 60 Day Guarantee (Quantity Discounts) 8 A.M. to 5 P.M. C.S.T. CLOSED WEEKENDS. Send self-addressed Stamped envelope (60¢ postage) for Catalog.

INVENTORS

INVENTORS! Can you patent and profit from your idea? Call AMERICAN INVENTORS CORPORA TION for free information. Over a decade of service 1 (800) 338-5656. In Massachusetts or Canada call (413) 568-3753

CABLE TV EQUIPMENT Wentern Destramblers, CD Players.

JERROLD-OAK-SCIENTIFIC ATLANTA-HAMLIN ZENITH MANY MORE CALL TODAY!
$\sqrt{ }$ Only quality products sold $\sqrt{ }$ Easy to use
$\sqrt{ }$ Satisfaction guaranteed $\sqrt{ }$ Knowledgeable sales staff
$\sqrt{ }$ Most orders shipped within 24 hours CALL FOR YOUR FREE CATALOG MC] 1-800-228-7404 VISA

MAKE THE CONNECTION
WITH
NU-TEK ELECTRONICS
5114 Balcones Wood Dr.\#307 Dept. 298
Austin, TX. 78759

WANTED
 INVENTORS! Confused? Need help? Call IMPAC for free information package. In US and Canada: 1 (800) 225-5800
 SEISMOMETER wanted to measure earthquakes Pay cash. D. HUTCHISON, 4000 Little Timber, Ed mond, OK 73034. (405) 341-9615.
 INVENTIONS/new products/ideas wanted: Call TLCI for free information 1 (800) 468-7200 24 hours day - USA/Canada.

ANTIQUE RADIO CLASSIFIED

Free Sample!
Antique Radio's Largest Circulation Monthly Articles, Ads \& Classifieds.
6-Month Trial: \$11. 1-Yr: \$20 (\$30-1st Class). A.R.C., P.O. Box 802-L4, Carlisle, MA 01741

TELEPHONE CALL SCREENING

REAL telephone call screening! Protect telephones, Fax, computer, hearing impaired, day sleepers. Eliminate wrong numbers, prank and sales calls. Plugin unit provides variable ring cadence signaling. True unlisted number on any touchtone private line. Automatic call routing. Send $\$ 13.95$ for complete theory and construction manual. ELECTRONIC CONTROL SYSTEMS, R.D. 2 Box 3308, Wernersville, PA 19565.

COMPUTER BOOKS

DISCOUNT computer books. All titles available, including recent releases. Please call or write for our latest catalog. BOOKWARE, 147 Campville Road, Northfield, CT 06778.1 (800) 288-5662.

BUY BONDS

HARDWARE HACKER

continued from page 76
cludes a Generic Array Logic Demo through SGS-Thomson and a CUPL demo disk from Logical Devices. Included here is a My First PAL Design booklet.

Tektronix has a new and free Scope Evaluation Kit available that includes a test circuit board which purposely generates overshoots and hard-to-see glitches. They also have several free oscilloscope videotapes available. Surprisingly cheap (\$3.95) analog hygrometer humidity instruments are available from Klockit.

Turning to other mechanical stuff, Stock Drive Products has a new data book and master catalog available on such things as gears, belts, couplings, robotics, breadboards, and such.

To improve the appearance of your prototypes, the DonJer folks have low-cost "instant suede" applied via liquid glop and a cabbage duster. 28 colors are available, as is a $\$ 52$ professional starter kit.

Yet another reminder here that the Midnight Engineering is a great new hacker magazine aimed at all of your small-scale hardware and software productions. Free samples are available by special arrangement.

Turning to my own stuff, for the fundamentals of microprocessors and microcomputers, check into my Micro Cookbooks, volumes I and II. I also have a new and free mailer for you that includes dozens of insider and top hardwarehacking secret sources. Write or call for a copy.

R-E

THE ULTIMATE ELECTRONICS CATALOG

Order your 260 page catalog and price list with over 14,000 money saving electronic parts and equipment! Send $\$ 3.00$ in a check or money order, or call 1-800-543-9568 today and use your Mastercard or Visa. Consolidated Electronics, Incorporated 705 Watervliet Ave., Dayton, Ohio 45420-2599

Name
Address
City__ State__Zip__

CIRCLE 70 ON FREE INFORMATION CARD
 $\mathbf{\Delta}$ indicates the level of difficulty in the assembling of our Products. $\mathbf{\Delta}$ Beginner $\mathbf{\Delta} \mathbf{\Delta}$ Intermediate $\mathbf{\Delta} \mathbf{\Delta} \mathbf{\Delta}$ Advanced \boldsymbol{A} Fully Assembled
SM-333
TA-3600

TA-477
TA-1000A TA-2200 13
We provide transformers for most of our Mark V amplifier kits.

AMPLIFIERS			
MODEL	DESCRIPTION	KIT	ASSEMBLED
TA-28MK2	Digital Voice Recorder	30.00	
TA-50A/B	Multi-Purpose Melody Generator \mathbf{A}	11.84	\$ 16.58
TA-50C	Multi-Purdose Melodv Generator Δ	12.65	17.71
TA-120MK2	35W Class "A" Main Power Mono Amp. $\mathbf{\Delta} \mathbf{\Delta}$	27.16	38.81
TA-300	30W Multi-Purpose Single Channel Amp 4	20.00	29.00
TA-302	60W Stereo Power Booster	50.00	70.00
TA-322i	$50 \mathrm{~W}+50 \mathrm{~W}$ IC Stereo Amp. w/led level display 4	35.50	46.15
TA-323A	30W $\times 2$ Stereo Pre-main Amp. A	29.50	38.35
TA-377A	HI-QUALITY FET Stereo Pre-Amp. $\triangle \Delta \Delta$	59.95	75.00
TA-400	40W Solid State Mono Amp ${ }^{\text {a }}$	28.00	34.93
TA-477	120W Mostet Power Mono Amp. $\boldsymbol{4}$ -	68.00	
TA-800	80W+80W DC Pre-Main \& Power Amp. \triangle	60.92	
TA-802	$80 \mathrm{~W}+80 \mathrm{~W}$ DC Stereo Main Power Amp. Δ. $\ldots .$.	45.94	
TA-820A	60W+60W OCLDC Pre-Main Stereo Amp. A A.	40.39	49.37
TA-1000 A	100W Dynamic Class "A" Main Power Mono Amp.	59.69	80.58
TA-1500	100W $\times 2$ Class "A" DC Stereo Pre-Main Ampd 4	73.70	95.81
TA-2200	FET Super class "A" DC Pre-Amb.	47.70	58.24
TA-2400A	Electronic Echo \& Revelation Amp $\boldsymbol{\Delta} \mathbf{\Delta}$ A	93.30	116.80
TA-2500	HQ Pre-Amp. w/10 band graphic equalizert		90.80
TA-2800	BI-FET IC Pre-Amp, w/3 way tone control A A	48.90	
$\begin{aligned} & \text { TA-3000 } \\ & \text { TA-3600 } \end{aligned}$	Stereo Simulator (For mono TV or any mono sourc 300W HQ Hi-Fi Power Mono Amp.	$\begin{aligned} & 130.20 \\ & 79.00 \end{aligned}$	$\begin{array}{r} 41.38 \\ 103.00 \end{array}$
POWER SUPPLIES			
TR-100A	O-15V 2A Regulated DC Power Supply	59.50	69.50
TR-355A	O-15V 5A Regulated DC Power Supply	14.55	20.76
TR-355B	O-30V 3A Regulated DC Power Supply	14.55	20.76
TR-503	O-50V 3A Regulated DC Power Supply	15.75	22.65

W.

MARK V ELECTRONICS. INC. - 8019 E. Slauson Ave., Montebello, CA 90640

ASSEMBLED IN OUR LABS

LIST10 - INFINITY XMTR Listen in via phone lines $\$ 199.50$ IPG70 - INVISIBLE PAIN FIELD BLAST WAVE GENERATOR $\$ 74.50$ ITM10 - 100,000 VOLT INTIMIDATOR UP TO 20'..... $\$ 99.50$ TAT30 - AUTOMATIC TELEPHONE RECORDING DEVICE $\$ 24.50$ II PSP40 - PHASOR SONIC BLAST WAVE PISTOL $\$ 89.50$ O DNE10 - ALL NEW 26 " VIVID COLORED NEON STICK . . $\$ 74.50$ LGU20 - 5 TO 1 MW VISIBLE RED HeNe LASER GUN . . $\$ 199.50$ - BLS10 - 100,00 WATT BLASTER DEFENSE WAND $\$ 89.50$
EASY ORDERING PROCEDURE - TOLL FREE 1-800-221-1705 or 24 HRS ON 1-603-673-4730 or FAX IT TO 1-603-672-5406 WSA, MC, CHECK, MOINUSFUNDS. INCLUDE 10\%SHIPPING. ORDERS $\$ 100.00$ \& UP ONLY ADD $\$ 10.00$. CAIALOG $\$ 1.00$ OR FREE WITH ORDER

Now Look What Hand Held Frequengy Counters Can Dol New from OptoElectronics

Introducing two advanced hand held frequency counters incorporating many unique features usually found only on laboratory bench counters.
These counters are designed for virturally every measurement application from DC through Microwave including measuring RF transmission frequencies at the maximum possible distance.
The UTC 3000 does all of this and is also the world's first Hand Held universal counter timer with Period, Time Interval, and Ratio measurement capability.

- 10 Digit LCD Display with Gate, Function, and Input Annunciators.
- Direct count (1 Hz resolution in 1 Sec) to over 150 MHz .
- 16 Segment Bargraph displays Input Signal Level. Ensures reliable counting, proven effective in locating concealed transmitters.
- High Accuracy, 1 ppm 10 MHz Crystal Time Base is standard with optional 0.2 ppm TCXO available.
- More usable Sensitivity than in any other counter for efficient antenna pick up measurements.
- Four push button selectable Gate times.
- Ni-Cad battery pack and AC adapter-charger included.

In addition, The Model UTC3000 features:

- In addition to Frequency, additional Functions Include: Period, Ratio, and Time Interval and Average.
- Single Shot Time Interval 100 ns, 1 ns averaged.
- Two input channels with High Impedance and 50 ohm input

Also Available from Optoelectronics, 8 Digit LED Hand Held Frequency Counters:
Model $221010 \mathrm{~Hz}-2.2 \mathrm{GHz}$ General Purpose Audio to Microwave . $\$ 219$
Model $1300 \mathrm{H} / \mathrm{A} 1 \mathrm{MHz}$ - 1.3 GHz RF Counter . . . $\$ 169$
Model CCB Relative RF Signal Strength Bar Graph Meter With 10 Segment LED Display... $\$ 99$

Model 26OOH $\$ 325$

Model UTC 3000 3375
Model TCXO-30 S80
Model TAIOOS Telescoping Whip Antenna .. S 12

NEC V20 \& V30 CHIPS
Replace the 8086 or 8088 in Your IBM PC and
Increase its Speed by up to 30%
UPD70108-5 (5MHz) V20 Chip
UPD70108-10 (0MHz V20
UPD70116-8 $(8 \mathrm{MHz})$ V30 Chip
UPD70116-10 $(10 \mathrm{MHz})$ V 30 Chip

MISC. COMPONENTS	
TANTALUM CAPACITORS	
 TM. 1 1uf@ 35V .. .19 TM1 $1 \mu f @ 35 V$. .19 TM2.2 $2.2 \mu \mathrm{f} @ 35 \mathrm{~V} . . .25$	$\begin{array}{ll} \text { TM4.7 } & 4.7 \mu \mathrm{f} @ 35 \mathrm{~V} . . .45 \\ \text { TM6.8 } & 6.8 \mu \mathrm{f} @ 35 \mathrm{~V} . .59 \\ \text { TM10 } & 10 \mu \mathrm{f} @ 35 \mathrm{~V} \text {.... } 69 \\ \hline \end{array}$
POTENTIOMETERS Values available (insert ohms into space marked "XX"): $500 \Omega, 1 \mathrm{~K}, 2 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 20 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K}, 200 \mathrm{~K}, 1 \mathrm{MEG}$	
TRANSISTORS AND DIODES	
PN2222....... 13 PN2907. 2N2222A...... 29 2N4401. 2N3055....... 69 1N270...	
2N3904......... 12 1N751.	.15 C106B1_....... 49
SWITCHES	
JMT123 SPDT, on on 1.25	$206-8$ SPST, 16-pin DIP 1.19
MPC121 SPDT, onotion 1.25	MS102 SPST, Momentary 39
D-SUB CONNECTORS	
DB25P Male. 25 -pin 69	DB25S Female, 25 -pin 75
LEDS	
XC209R T1, Red $\quad .15$	XC556G T1 ${ }^{4}$, Green ._. 17
XC556R Tixa, Red.	XC556Y 1134, Yellow..... 17^{17}
IC SOCKETS	
Low Profile ICSOC	Wire Wrap (Gold) Level \#2
4 LP ….............. 12	14WW .-.
	16WW...................... . 69
24LP......................... . 21	24WW..................... 1.19
28LP......................... 23	28WW...................... 1.39
40LP 29	40WW...................... 1.89
So	able
$74 \mathrm{HC} \mathrm{HI-SPEED} \mathrm{CMOS}$	
Part No. Price	Part No. Price
74HCOO....................... . 19	74HC175 59
74HC02..................... 19	74HC221 89
74HCO4...................... 19	74HC240 69
74HC08........................ 19	74HC244 79
74HC10...................... 19	74HC245 79
74HC14..................... 29	74HC253 49
74HC30 25	74HC259 49
74HC32...................... 25	74HC273 49
74HC74...................... 29	74HC373 69
74HC75 35	74HC374 …................. 69
74HC76...................... 35	74HC595................... 1.29
74HC85 55	74HC6881.49
74HC86...................... 29	74HC943 6.95
74HC123.................... 59	74HC4040. 79
74HC125................... . 49	74HC4049 29
74HC132.................... 49	74HC4050 29
74HC138.................... 45	74HC4060, 69
74HC139.................... 39	74HC4511................... 99
74HC154 1.49	74HC4514 1.79
74HC163.................. 39	74HC4538 1.19
74HC174 59	74HC4543 1.19
74HCT-CMOS TTL	
74HCT00....................... 17	74HCT139 39
74HCT02......................... 17	74HCT157 29
74HCT04..................... 19	74HCT174 29
74HCT08..................... 17	74HCT175 29
74HCT14..................... 29	74HCT240 69
74HCT32..................... 19	74HCT244 49
74HCT74.................... 29	74HCT245 49
74HCT86...................... 25	74HCT373 49
74HCT138................... 39	74HCT374 39

LINEAR

$\mathrm{rl}_{\mathrm{N}} \mathrm{C}$	1-9	$12 \pm$	Part Ne 1.9	$10 \pm$
TLO	69	59	DS14C88N 1.19	9
TL072CP	79	69	LM1489N.......... . 49	5
TL074CN	99	89	DS14C89N 1.19	1.09
TL081CP	59	49	LM1496N 69	59
TL082CP	59	49	LM1871N..........1.95	1.75
TLO84CN	99	89	LM1872N..........1.95	1.75
LM307N	45	39	ULN2003A 79	69
LM308N	65	. 59	ULN2004A 79	69
LM309K	49	1.25	26LS29 2.95	75
LM310N	1.49	1.25	26LS31...............1.19	9
LM311N		39	26LS321.19	9
LM317T	69	59	26LS33 1.75	1.49
LM318N		99	ULN2803A 1.19	99
LM319N	1.29	1.19	LM2901N 39	29
LM323K	3.49	3.25	LM2907N 1.29	1.19
LM324N	39	+35	LM2917N (8 pin) - 1.75	
LM3352	49	1.25	MC3470P 1.29	1.19
LM336Z	1.09	. 99	MC3479P 3.95	3.75
LM337T		1.09	MC3486P 1.29	1.19
LM338K		4.25	MC3487P 1.29	
LM339N	49	+39	LM3900N 49	45
LF347N.	1.49	1.25	LM3905N 1.29	. 19
LM348N	69	59	LM3909N 89	79
LF351N	49	39	LM3914N 1.95	
LF353N	59	49		
LF356N	89	79		
LF357N	99	89		
LM358N	59	49		
LM380N...		. 79		
LM385Z1.2	1.75	1.49		
LM386N-3.........	89	79		
39	45	39		
39	95	1.75 69	78L08 35	
	29	1.19	7905K.............. 1.49	1.25
-55	35	. 29	7905T............... 55	碞
XRL55	75	65	75113 1.39	1.19
LM556N	49	. 39	75150 1.29	-19
LMS6S	99	89	75154 …........... 1.29	1.19
LM566CN	1.29	1.19	75174 2.95	2.75
M567V	75	. 65	75175 …........... 2.95	2.75
LM723CN	49	39	75176 …........... 2.25	1.95
LM741CN	5	29	75451 45	39
LM747CN	. 59	49	75452 _.............. 45	. 39
LM1458N	39	35	75492 89	. 79
		45		

Now Available...Jameco's NEW Flyer 142 with 48 pages of Computer Peripherals \& More!

TEST EQUIPMENT IdStar 20 MHz Oscilloscope d 1 GHz Frequency Counter

GS7020
irge $6^{\prime \prime}$ rectangular display - High sitivity: 4 mV/div
7020 Osciloscope....... $\$ 399.95$ ide measuring range \cdot Measured ie hold function
7101 Frequency Counter \$299.95
smetheus 9600 Baud
idem

Metex Digital Multimeters tex General Specs: indheld, high accuracy
/DC Voltage. AC/DC /JC Voltage, $A C / D C$
rent, Resistance, Diodes Itinuity. Transistor hFE anual ranging woverload
lection
650, 3650B \& M4650 only:
so measure frequency and capacitance 650 only: - Data Hold Switch - 4.5 Digit
610 3.5 Dgit Mutimeter $\$ 49.95$ 650 3.5 Digt Mutimeter w Frequency \& 650B Capactance........................ $\$ 699.95$ 650 4.5 Dgitw Frequency, Capaotance and Data Hold Switch................ $\$ 99.95$

Prototype Design Stations

WM1 \& WM2 Features: \cdot Removable solderless bread board - Variable and fixed DC power supply - Multifrequency signal generator - Analog multimeter - 8 bicolor LEDs (red \& green) $\cdot 8$ logic switches \cdot Logic probe or LEDs (red \& green) $\cdot 8$ logic switches - Logic probe
Lighted power switch. Fuse overload protected Sturdy ruggedized case
WM1 Special Features: . 4 potentiometers - Built-in speaker
WM2 Special Features: - Pulse Generator - Binary coded decimal (BCD) to 7 -segment decoder/driver - DB25 connector - Frequency counter (1 Hz to 1 MHz)
WM1 Analog Prototype Station \$199.95 WM2 Digital Prototype Station \$249.95

IBM PC/XT/AT
Compatible Keyboards

JE2017
JE2015 84-Key Standard AT Style Layout $\$ 59.95$ FKB4700 101-Key Enhanced Layout with 12 Function Keys..... $\$ 69.95$ JE2016 111. Kunction Keys $\$ 69.95$ JE2016 $\begin{aligned} & \text { 111-Key Enhanced with Solar } \\ & \text { Powered Calculator....... } \$ 79.95\end{aligned}$ JE2017 104-Key Enhanced with Trackball (Microsott Compatible) $\$ 99.95$

PROTOTYPING PRODUCTS ameco Solderless Breadboards

EGA \& Multiscan Monitor Packages Casper 14" EGA monitor and EGA card package ($720 \times 350 \mathrm{max}$. resolution)
JE1059 EGA Monitor \& EGA Card............... \$459.95
Relisys $14^{\prime \prime}$ Multiscan monitor and EGA card package (800×600 max. resolution)
JE2057 Multiscan Monitor \& EGA Card.......... $\$ 559.95$

A.R.T. EPROM Programmer

UVP EPROM Eraser

- Programs all current EPROMs in the 2716 to 27512 range plus the X2864 EEPROM - RS232 port - Sotware incl.
EPP.
. $\$ 179.95$

Soldering and Desoldering Stations

60 Watt Analog Display Soldering Station - Electronic temperature control from 200° to $878^{\circ} \mathrm{F}$. Cartridge heating element for a longer life of the soldering tip
XY1683
. $\$ 59.95$
60 Watt Analog Display Soldering Station • Electronic temperature control from 200° to $878^{\circ} \mathrm{F}$. Ceramic heating element for a steady temperature and long life
XY2660 \qquad 60 , Electronic temperature to read $560^{\prime \prime} 10^{\circ}$ to $878^{\circ} \mathrm{F}$. Temperature displayed on easy to read $.560^{\circ \prime} \mathrm{H}$ 3-digit LED readout - Nichrome heating element

XY960

$\$ 99.95$

Hard \& Hard/Floppy Disk Controller Cards

	mpm Hard	RLL Hard	MFM Hard/Floppy	RLL HardFloppy
Computer Type	Part No./ Price	Part No. / Price	Part No. / Price	Part No. / Price
8088 (PCXT) @ 3:1nterleave	XTGENS7995	1004A27X589.95	JE10445109.95	-
80286 (AT) 396 © 2:) Interieave	1003VMM 15129.95	1003VSR1/5149.95	1003VMW25149.95	1003VSR225169.95
80285 (A)/396 © 1:1 Interiesve	1006VMM 1 \$14.95	1006VSR1/5169.95	1006ทMM25169.95	1006VSR25109.95

30 Watt Electronic Temperature Controlled Desoldering Station - Electronic temperature control from 212° to $842^{\circ} \mathrm{F}$. Selfcontained high rotary vacuum pump
XY999
$\$ 279.95$
XYY9

- Erases all EPROM's - Erases 1 chip in 15 Min . and 8 chips in 21 min. • UV intensity: 6800 UW/CM ${ }^{2}$
DE4
\$69.95

55 Shoreway Road
Imont, CA 94002
Hour Order Hotline (415) 592-8097 U's (415) 592-2503 or (415) 595-2664 lex 176043 - Ans. Back: Jameco Blmt ind $\$ 2.00$ Postage for a FREE 80-Page Catalog 1990 Jameoc Electronics 4/90 Uis a regecisered rademades of
ernational Business Machines

$$
\begin{aligned}
& \text { iness Machines } \\
& \text { 24-Hour Order Hotline (4 }
\end{aligned}
$$

$\$ 50.00$ Minimum Order - U.S. Funds Only CA Residents Add 6\%.6.5\% or 7\% Sales Tax (May vary according to weight and shipping method) Terms: Prices subject to change without notice. erms: Prices subject to change without notice.
We are not responsible for typographical errors. We reserve the right to substitute manutacturers. Items subject to availability and prior sale. Products pictured may only be representative.
Complete list of terms/warranties is available
15) 592-8097 - The Following Services Are Also Available Through (415) 592-8097 From 7AM - 5PM P.S.T.

Customer Service - Technical Assistance - Credit Department . All Other Inquiries

Dipl/Key - 1-800-344-4539
 TWX - 9103508982 DIGI KEY CORP

12 VOLT DC MINI FAN
Howard Industriest
3-15-810. Operates on
$12 \mathrm{Vdc}, 0.10 \mathrm{amp}, 1.0$ watt. Compact plastic housing. 2.35° square $\times 1.275^{\circ}$ thick.
9 blade fan. Two 9 pigtal leads.
CAT\# CF-121 \$9.00 each

115 VAC COOLING FAN

STANDARD SIZE
COOLING FAN.
Features die cast metal housing for strength and durability.
IMPEDANCE PROTECTED
$411 / 16^{-}$square $X 11 / 2$ deep.
Factory new 120 Vactans. CF1-N $\$ 9.50$ each

LED CHASER KIT
 Build this variable speed led chaser. 10 leds flash sequentially at whatever speed you set them for. Easy to build kit includes pc board, parts and instructions. Ideal for special lighting eflects, costumes, etc. Operates on 3 to 9 volts. PC board is $5^{\circ} \times 2.25^{\circ}$. A great one hour project. CAT\# AEC $\$ 6.50$ each

STEPPER
Airpax\# A82743-M4 Brand new 12 volt dc stepper motor. 35 ohm coil. 7.5 degrees per

CAT\# SMT-5 \$10.00 each

> RECHARGEABLE BATTERY PACK (USED)

Four $A A$ nickel cadmium batteries connected in series to make a 4.8 volt pack. Batteries are in a 2×2 configuration with a 2 pin connector attached. The four batteries can be separated into single AA size solder tab nickel cadmium batteries or resoldered into other configurations.

SPECIAL SALE PRICE NOW
$\$ 3.00$ per pack $\cdot 10$ packs for $\$ 25.00$ CAT\# NCB-41AAU

SPDT PUSHBUTTON Marquardti 1843
Rated 6 amps © 125/250 Vac. Black plastic pushbution.
Swich body: $95^{\circ} \times .94^{-} \times .65^{\circ}$
CAT\& PB-18 \$1.65 ea. $\cdot 10$ for $\$ 15.00$ ea.
PUSHBUTTON SWITCH GC/Thomsen 35-420
S.P.S.T. normally open momentary pushbutton switch. Red plastic actuator 0.57 diameter. Chrome bezel 0.68^{-}diameter. Threaded
bushing mounts in $.50^{\circ}$ diameter hole. Rated 3 amp @ 25OVac. Solder loop terminals. CAT\# PB-20 $\$ 1.00$ each

WALL TRANSFORMERS
Cll PLUG

DIRECTLY
NTO
NTO
120 VAC
120 VAC
OUTLET
2 Vdc 9500 ma CATI DCTX-125 24.50 6 Vde e 200 ma CATs DCTX- $620 \$ \$ 2.25$ 9 Voc 91 amp CATE DCXT-051 $\$ 5.00$ 24 Vac 9625 ma . CATE ACTX- 2462 \$3.25 SERVO MOTOR 3 Voc servo with potentionnte: Ibeal for robotisa or remote control model experimentation. Aotates approx. 140 dogrees. Pot connected to motor varies From ether 500 to $3000 \mathrm{chms}, 1.55 \times 0.95^{\circ} \times 1.65^{\circ}$. 0.87 diameter nobber wheol attached to motor shatt can be used at a capstan or can be oaslly removed. Prepped with capaciors, chokos and wre loads. CATI SVO-2 2 for $\$ 1.00$

MA SIZE $\$ 1.50$ oach 1.2 vots 160 mAh
CATE NCB-AAA MASIIE $\$ 2.00$ each MASIIE $\$ 2.00$ oach 1.25 vots 500 mAh

MSIIE $\$ 2.20$ ench
M SIIE \$2.20 anch
WITH SOLDER TABS
WITH SOLDER TABS
CATI HCB-SAA
C SIZE \$4.25 osch
C SIEE $\$ 4.25$ osch
1.2 vots 1200 mAh 1.2 vots 1200 mN
CATH NCB-C

D SIZE \$4.50 each 0 SIZE $\$ 2.50$ each
1.2 vols 1200 mAh CATA NCB-D

XENON TUBE

NICKEL-CAD BATTERIES	0-30 MINUTE AUTOSHUTOFF TIMER
(RECHARGEABLE)	Sankyo Soike Mig.\# TMCF35MYB9 120 Vac 60 hz .10 amp contacts. UL. rated. Tum shaft to tum on lights or other electrical devices. Bell ings and circuit breaks after specified amount of time. Ideal for any device that needs to shut off automatcally. $2.92^{\circ} \times 1.5^{\circ} \times 2.54^{*}$ behind face plate. $1 / 4^{*}$ hali-round shaft. CAT\# TMC-30 \$3.00 each
MA SIZE $\$ 1.50$ oach 1.2 volts 180 mAh CATE NCB-AAA	
MASIEE $\$ 2.00$ oach 1.25 vots 500 mAh CATE NCB-AA	
	PHOTO FLASH CAPACITOR
M SIEE \$2.20 anch WITH SOLDER TABS CATE HCB-SAA	Rubycon\# FKX
C SIIE \$4.25 ench	200 mfd .330 volts.
CATH NCB-C	0.79^{*} diameter X 1.11^{*} high Solder loop terminals.
D SIZE \$4.50 each 1.2 volts 1200 mah	CAT\# PPC-200 \$3.25 each
CATA MCB-D	10 for \$30.00 - 100 for \$275.00
XENON TUBE	$22 / 44$ PIN CONNECTOR
$\square \rightarrow$	

5-6 VDC SIP

 REED RELAY Eloctrol Bine BoraB8S1A05A10 $58 \mathrm{Vdc}, 500$ ohm col. S .
mally
open resed rolay. mally open reed relay.
0.5 amp contacts. SIP conliguration 0.5 amp contiacia.
$1 \times \times 375 \times .5$. CATE RRLY-SIPS $\$ 1.10$ anch - 10 too $\$ 10.00$

5 VDC Latching relay Aromata RSL2O-5V Miniturur SPDT.
dual coll litching
 rolaty 5 Vdce
170 ohm coilh. 170 ohm coibit. 1 amp. The conpart blo. UL and CSA recognized. 0.737 $\times 0.390^{\circ} \times 0.390^{-}$

12 VOLT D.C. COIL S.P.D.T. Omrons G2E-184P 4 amp contacki 3350 om coll Sugan cubo 12 zo.
$61 \times 12 \times 40^{2}$

1. ${ }^{61^{\circ} \times 12} \times 14^{4}$ high.P.C. moun CATA RLY Y 7 Pa ping
$.156^{*}$ pin spacing, 0.200^{*} between double rows, gold contacts, P.C. mounting. SPECIAL. Same as AMP\# 2-530655-6. CAT\# EBC-1G $\$ 1.00$ each - 10 for $\$ 8.00$

ELECTRONIC GAME BOARD

The inner workings of an electronic Scrabolo game. Operatos on 6 V Ve. 8 dight apha-numentc roadout. 45 bution keypas, 14 transititors, 2 I.C. 's, 1 plozo olbememt and other poodises. Top and bottom row a haypad butions aso tunction keys, mibdio 3 rowa aro aphabetic. No inctruetions avalable. $6 \times 4.45^{\prime}$. CAT\& ST-4 $\$ 1.75$ each 10 for $\$ 15.00$ TELEPHONE COUPLING TRANSFORMER Musel Products internationals A19N-HO-1D/T Primary: 600 ohm
Socondary: $600 / 600 \mathrm{chm}$ Socondary: $600 / 800 \mathrm{chm}$
$0.7 \mathrm{~m}^{\prime} \times 0.61^{\circ} \times 0.65^{\mathrm{hl}} \mathrm{hgh}$. 6 p.c. plins on 0.187 conters. Primary inductanco: 300 mH min., at $1 \mathrm{kHz}, 1$ volt. CATe TCTX-1 $\$ 1.25$ min., at $1 \mathrm{ktz}, 1$ volt.

LED'S STANDARD JUMBO DIFFUSED T $1-3 / 4$ sizo RED CATE LED- 1 10 for $\$ 1.50-100$ for $\$ 13.00$ GREEN CATE LED-2 10 for $\$ 2.00-100$ for $\$ 17.00$
YELLOW CATE 10 tor $\$ 200$ - 100 tor $\$ 17.00$ FIASHING LED FLASHING LED whth built in flashing circut
operates on 5 volss aperates on 5 wolts...
RED
CATE ISD $\begin{array}{ll}\text { RED } & \$ 1.00 \text { osch } \\ \text { CATE LED-4 } & 10 \text { for } \$ 9.50\end{array}$ $\begin{array}{ll}\text { GREEN } & \$ 1.00 \text { each } \\ \text { CATE LED-4G } & 10 \text { to } \$ 9.50\end{array}$ BI-POLAR LED Lights RED one direction, GREEN the other. Two leads.
CATE LED-s 2 tor $\$ 170$ LED HOLDER LED HOLDER ciremeo itasese θ

10 AMP SOLID
 STATE RELAY

ELECTROL: S2178
CONTROL: Rated 5.51010 Vdc
(will operate on 3.32 Vdc) LOAD: 10 amp Q 240 Vac $21 / 4^{\circ} \times 134^{\circ} \times 776^{\circ}$. CATE SSRLY-10B $\quad \mathbf{5 0 . 5 0} \mathrm{ea}$. QUANTITY DISCOUNT 10 for $\$ 85.00-25$ for $\$ 175.00$ 50 for $\$ 300.00-100$ for $\$ 500.00$

$=1=$
NON POLARIZED PLUG CATI LCAC 2 for $\$ 1.00$ 100 for $\$ 45.00$
polarized plug CATH LCP-1 60e oach 100 for $\$ 50.00$

15 AMP SNAP-ACTION SWITCH 5 pleces of a 15 amp
125.250 Vac normally
125.250 Vac normally
open switch. Body if
$13 / 4^{\circ} \times 55^{\circ} \times 58$
$13 / 4^{\circ} \times 55^{\circ} \times 55^{\circ}$.
Button extende 3/16 above switch body.

TO-92 TRANSISTORS
20 assontod TO-92 plastle case
transistors. Various sylyes of
NPN and PNP. Somp house
markod, some standard marking. markod, some standard marking.
CATE GRTRN $\$ 2.00$ per assort

SWITCH \qquad
\$200 per package

LOOK WHAT $\$ 1.00$ WILL BUY

200 ASSORTED PLEM NOM

$1 / 4$ WATT RESISTORS
Bent leads, carbon comp. and carbon fllm. CATE GRES $\$ 1.00$ per assortment

200 ASSORTED PV, 1/2 WATT RESISTORS Bent leade, carben comp. and fllm. CATE GRABRE $\$ 1.00$ per assortment

50 ASSORTED

DISC CAPACITORS Π i Most are eut (p.c. loads). Some to 500 volts.
CATe GRABDC $\quad \$ 1.00$ per ascortment

15 VALUES OF

ELECTROLYTICS

Contains both axial and
radial styles trom 1 and

CATE GRABCP $\$ 1.00$ per ascortment
LOOK WHAT $\$ 2.00$ WILL BUY

ORDER TOLL FREE 1-800-826-5432

MAIL ORDERS TO:
ALL ELECTRONICS
P.O. BOX 567

VAN NUYS, CA 91408

INFO: (818)904-0524
FAX: (818)781-2653 MINIMUM ORDER $\$ 10.00$ MINIMUM ORDER $\$ 10.00$
QUANTITIES LIMITED CALIF. ADD SALES TAX USA: $\$ 3.50$ SHIPPING FOREIGN ORDERS INCLUDE SUFFICIENT SHIPPING. NO C.O.D.

2400 BAUD MODEM $\$ 89^{95}$
 2400/1200/300 BAUD FULL HAYES COMPATIBILITY CONFMGUR AS COM1, COM2, COM3 WAIT. MA - BUILT-IN SPEAKER - AUTO WAIT-FOR-DIAL TONE AND AUTO-REDIAL - PROCOMM MCT-24I
 ```MCT-121 1200 BAUD INTERNAL MODEM```
 MINI UPRIGHT CASE $\$ 199^{95}$ SMAL IR MINI $286 / 386$ MOTHERBOARDS 8088 OR MINI HOLDS 3 5-1/4 \& 1 3-1/2 DRIVES 200 WATT POWER SUPPLY 200 WIGIT LED SPEED DISPLAY
 12"HX $16^{\circ} \mathrm{L} \times 8^{*}$ W
 CASE-120

UPRIGHT CASE $\mathbf{\$ 2 4 9} \mathbf{9}^{95}$

SPACE SAVING DESIGN HOLDS
ALL SIZES OF MOTHERBOARD
AND INCLUDES: - 250 W POWER SUPPLY - MOUNTS FOR 3 FLOPPY \& 4 HARD DRIVES DISPLAY \& ROWER \& DISK LED'S

- ALL HARDWARE, FACEPLATES \& SPEAKER CASE-100
CASE-FLIP FOR 8088 MB'S
CASE-SLIDE FOR $8088 \mathrm{MB'S}$
CASE-SLIDE FOR 8088 MB'S
CASE-70 FOR 286 MB'S
$\begin{array}{ll}\text { CASE-70 } & \text { FOR } 286 \text { MB'S } \\ \text { CASE-50 } & \text { FOR MINI } 286 \text { MB'S }\end{array}$
CASE-50
MINI-286 W/150W P
$\$ 39.95$
$\$ 39.95$

MODULAR PROGRAMMING SYSTEM MODULES USE A COMMON HOST ADAPTOR CARD-1 SLOT PROGRAMS EPROMS, PROMS, PALS, MORE! HOST ADAPTOR CARD \$29.95 - UNIVEASAL INTERFACE FOR
PROGAMAMING MOOULESS! PROGRAMMIN MODULESS
-SELECTABLE ADRDESES PREVENS CONFLIC MOD-MAC

UNIVERSAL

MODULE

- PROGRAMS EPROMS, EEPROMS, PALS, BI-POLAR PROMS, 8748 \& 8751 SERIES DEVICES; 16 V 8 AND 20 V8 GALS (GENERIC ARRAYLOGIC)FROM LATTICE, NS, SGS - TESTS TTL, CMOS, BLANK CHECK, PROGRAM, AUTO, READ MASTER, VERIFY AND COMPARE - TEXTOOL SOCKET FOR $3^{*}-6^{*}$ W. IC'S ($8-40$ PINS) MOD-MUP
EPROM MODULE
\$119.95
- PROGRAMS $24-32$ PIN EPROMS, CMOS EPROMS \& EEPROMS
FROM 16 K TO 1024 K . HEX TO OBJ CONVERTER . AUTO FROM 16 K TO 1024 K . HEX TO OBJ CONVERTER - AUTO, BLANK CHECK/PROGRAMVERIFY - VPP $5,12.5,12.75,13,21$ $\& 25$ VOLTS - NORMMAL, INTELLIGENT,
PULSE PROGRAMMING ALGORITHMS
MOD-MEP
MOD-MEP-4 4-EPROM PROGRAMMER - $\$ 169.95$ MOD-MEP-8 8-EPROM PROGRAMMER $\$ 169.95$
$\$ 259.95$ MOD-MEP-16 16-EPROM PROGRAMMER \$499.95

OTHER MODULES

MOD-MPL PAL MODULE
MOD-MIC DIGITAL TESTER MODULE MOD-MBP BIPAL MOD-MBP BI-POLAR PROGRAMMING MODULE $\$ 259.95$
MOD-MMP MICROPROCESSOR PROG. MODULE ... $\$ 179.95$ MOD-MMP MICROPROCESSOR PROG. MODULE $\$ \mathbf{\$ 1 7 9 . 9 5}$
MOD-MPL-SOFT CUPL SOFTWARE $\$ 99.95$

VGA COMPATIBLE PACKAGE

 RESOLUTION IN 256 COLORS - IBM STYLE- VGA EGA, CGA, AND MGA COMPATIBLE VGA-PKG (INCLUDES VGA CARD AND MONITOR)

VGA MONITOR

$\$ 359.95$
14* ANALOG VGA - GLARE RESISTANT SCREEN • 720×480 VGA-MONITOR
STRELISYS MULTISYNCH
\$429.95

- FULL FEATURED MULTISCAN MONITOR WITH UNLIMITED COLORS . 1024×768 RESOLUTION, $14{ }^{-}$NONN-GLAA
- AUTO SWITCHING - TTUANALOG VIDEO INPUT
JDR-MULTI
EGA SPECIALI CARD \& MONITOR-UUST SAT9,
EGA-MONITOR 14* RGB MONITOR $\$ 339.95$
NEC-MULTI-3D DIGITAL 1024×768 RESOLUTION ... $\$ 649.95$
JDR-MONO $12^{\prime \prime}$ TTL MONOCHROME-GREEN $\$ 69.95$
JDR-AMBER 12° TTL MONOCHROME-AMBER $\$ 69.95$

QUALITY KEYBOARDS
STANDARD KEYBOARDS:
BTC-5060 AUTOSENSE FOR XT/AT $\$ 59.95$
$\$ 64.95$
ENHANCED KEYBOARDS:
BTC- 5339 AUTOSENSE FOR XT/AT, AUTOREPEAT .. $\$ 69.95$
K103-A AUDIBLE "CLICK" STYLE $\$ 84.95$
MAX-5339 MAXI-SWITCH W/TACTILE FEEDBACK $\mathbf{\$ 8 4 . 9 5}$

 32.7 MB \$219 32.1 MB ${ }^{\text {s } 279}$ 42.8 MB ${ }^{\text {s }} 339$ 65.5 MB ${ }^{\text {s }} 389$ 80.2 MB ${ }^{\text {s } 5}$

1.44MB 3-1/2" DRIVE $\$ 99^{95}$

- READWRITE 720 K DISKS, TOO

FDD-1.44X BLACK FACEPLATE
FDD-1.44A BEIGE FACEPLATE
FDD-1.44 SOFT SOFTWARE D
FDD-1.44 SOFT SOFTWARE DRIVER $\$ 19.95$
1/2 HEIGHT FLOPPY DISK DRIVES:
FD-55B 5-1/4* TEAC DS/DD 360K $\$ 99.95$
$\begin{array}{ll}\text { FD-55G } & 5-14^{*} \text { TEAC DS/HD } 1.2 \mathrm{M} \\ \text { FDD-............ } \$ 1290 & 5-1 / 4^{*} \text { DS/DD } 360 \mathrm{~K}\end{array}$
FDD-1.2 $\quad 5-1 / 4^{*}$ DS/HD 1.2 M $\$ 95.95$

MOTHERBOARDS

20 MHz 386 \$ 629 ₹ UParaDer
 \section*{}

16 MB RAM CAPACITY - 8 MB
UN BOARD(OK), 8 MB RAM CARD
USES 256 K OR 1 MB SIP RAMS
SIOTS: OR 1 MB SIP RAM
8 SLOTS: 1×32-BIT RAM
2×8-BIT \& 5×16-BIT
MEMORY INTERLEAVING

- AMI BIOS - XT-SIZE BOARD

MCT-M386-20
MCT-C386-25
MCT-C386-25
MCT-386M14
MCT-386MB25 $\quad 10 / 20 \mathrm{MHZ} 386$........................... $\$ 799.00$

10MHZ MINI-286

s18995
AT COMPATIBLE - KEYBOARD SELECTABLE 6/10MHZ EXPANDABLE TO 4MB ON-BOARD WITH 1MB DRAMS (ØK)
SIX 16 -BIT, TWO 8-BIT SLOTS. AMI BIOS. LED SUPPORT MCT-M286-10
MCT-M286-12 $\quad 8 / 12 \mathrm{MHZ}$ MINI-286 $\$ 199.95$ $\begin{array}{lll}\text { MCT-M286-16N } & 8 / 16 \text { MHZ } 286 & \ldots . ~ \\ \text { MCT-M286-20N } & \$ 89.95 \\ \text { MCT }\end{array}$ MCT-M286-20N 10/20MHZ 286 $\$ 389.95$ MCT-TURB MCT-TURBO-10 \quad 4.77/10MHZ SINGLE CHIP $8088 \$ 99.95$

STANDARD 4.77 MHZ 8088 $\$ 87.95$
4.77/8MHZ 8088 $\$ 89.95$

EPROM PROGRAMMER \$129.95

- PROGRAMS $27 X X$ AND $27 \times X X$ EPROMS UP TO 27512
- SUPPORTS VARIOUS PROGRAMMING FORMATS \& VOLTAGES - SUPPORTS VARIOUS PROGRAMMING FORMATS \& VOLTAGES
- SPLIT OR - SPLIT OR

COMBINE CONTENTS OF SEVERAL EPROMS OF
DIFFERENT SIZES

- READ WRITE COPY - READ, WRITE, COPY,
BLANK CHECK \& VERIFY SOFTWARE FOR HEX AND INTEL HEX FORMATS MOD-EPROM

JDR MICRODEVICES, 2233 BRANHAM LANE, SAN JOSE $95124 \quad$ Terms Minimum order $s 10.00$. For shipping s handing include $\$ 3$, 50 for ground and LOCAL (408) 559-1200 FAX (408) 559-0250 TELEX 171-110 $\$ 4.50$ tor air Orders over 1 lb and toreign orders may require addational shipping
charges-please contact the sales department tor the amount. CA residents must RETAIL STORE: 1256 S. BASCOM AVE., SAN JOSE, CA (408) 947-8881 HOURS: M-F 9-7 SAT. 9-5 SUN. 12-4

VALUE-PRICED TEST EQUIPMENT ALL WITH A 2 YEAR WARRANTY!

35 MHZ DUAL TRACE
OSCILLOSCOPE
549995

- WIDE BAND WIDTH • VARIABLE HOLDOFF

MODEL-3500 (SHOWN)
20 MHZ DUAL TRACE OSCILLOSCOPE ${ }^{5} 389.95$ - TV SYNC FILTER - COMPONENTS TESTER MODEL 2000
the Ultimate
3.5 DIGIT DMM
$\$ 79^{95}$

- BASIC DC ACCURACY $\pm 0.25 \%$
- 34 RANGES
- TEMP. TRANSISTOR \& RESISTANCE
FEATUES

FEATURES
DMM-300 (SHOWN)
3.5 DIGIT

FULL FUNCTION DMM s.49.95

- BASIC DC ACCURACY $\pm 0.25 \%$
- 22 RANGES

DMM-200 $\$ 49.95$
3.5 DIGIT POCKET SIZE DMM ${ }^{\text {s }} 29.95$

- BASIC DC ACCURACY $\pm 0.5 \% \cdot 14$ RANGES DMM-100
3.5 DIGIT PROBE TYPE DMM
$\$ 5495$
- AUTORANGING
- AESISTANCE: 2K-2M

DPM-1000 (SHOWN)
至iny
HIGH/LOW LOGIC PROBE ${ }^{\text {s }} 17.95$

- DETECTS TTUCMOS LOGIC STATES
- MEMORY FUNCTION FREEZES DATA FOR LATER USE LP-2800
PULSER PROBE FOR QUICK DEBUGGING ${ }^{\text {s }} \mathbf{1 9 . 9 5}$
- INJECTS PULSE INTO TEST CIRCUIT-VARIABLE WIDTH - TTL, DTL, TRL, HTL, HINIL, MOS, \& CMOS COMPATIBLE LP-540

JIM'S BARGAIN hUNTERS CORNER

JIm Wharton

FACTORY REFURBISHED VGA PACKAGE \$34995

IF NEW \$499.95

SAVE $\$ 150$ ON THE MONITOR AND B-BIT CARD!
HIGH RESOLUTION COLOR ANALOG MONITOR HAS AUTO SWITCHING FOR VGA, EGA, CGA, MDA, HGC VGA STANDARD 640×480 IN 16 OUT OF 256 COLORS 320×200 RESOLUTION IN 256 COLORS FROM
A PALETTE OF 262.000 A PALETTE OF 262,000
SOFTWARE DRIVERS FOR MICROSOFT WINDOWS, AUTOCAD, LOTUS 1-2-3 8 SYMPHONY, DIGITAL
RESEARCH GEM AND VENTURA PUBLISHER RUEARCH GEM AND VENTURA PUBLISHER EASY INSTALLATION
FULL REGISTER BIOS AND INTERFACE COMPATIBILITY; 256 VIDEO RAM
R/VGA-PKG EXPIRES 4/30/90

2233 BRANHAM LANE. SAN JOSE. CA 95124

ORDER TOLL-FREE

 800-538-5000LOCAL (408) 559-1200 CUSTOMER SERVICE 800-538-5001 TECH SUPPORT 800-538-5002 FAX (408) 559-0250

CIRCLE 113 ON FREE INFORMATION CARD DEALERS CIRCLE 170 ON FREE INFORMATION CARD

ADVERTISING INDEX

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.

Free	rmation Number	Page	78	Radio Shack 7
108	AMC Sales	14	196	SCO Electronics 19
201	Ace Communications.		176,177	Sencore $23, \mathrm{CV} 3$
75	Ace Products.	21	-	Star Circuits 30
107	All Electronics	89	83	Synergetics 60
-	Amazing Concepts	84	191	TECI . 58
77	B\&K Precision	CV4	123,186	Test Probes 3
67	Banner Technical Books		250-253	Test Probes 3
98	Beckman Industrial		198	Unicorn 80
109	C\&S Sales		197	U.S. Cable TV 19
70	CEI83	64	Video-Link 82
	CIE		184	Viejo Publications 62
203	Cable Network		185	WPT Publicatons 58

Gernsback Publications, Inc.
500-B Bi-County Blud.
Farmingdale, NY 11735
1-(516) 293-3000
President: Larry Steckler
Vice President: Cathy Steckler
For Advertising ONLY
516-293-3000
Fax 1-516-293-3115
Larry Steckler
publisher
Arline Fishman
advertising director
Denise Haven
advertising assistant
Christina Estrada
advertising associate
Lisa Strassman
credit manager

SALES OFFICES

EAST/SOUTHEAST
Stanley Levitan
Eastern Sales Manager
Radio-Electronics
259-23 57th Avenue
Little Neck, NY 11362
1-718-428-6037, 1-516-293-3000
MIDWEST/Texas/Arkansas/
Okla.
Ralph Bergen
Midwest Sales Manager
Radio-Electronics
540 Frontage Road-Suite 339
Northfield, IL 60093
1-312-446-1444
Fax 1-312-446-8451

PACIFIC COAST/ Mountain

States
Marvin Green
Pacific Sales Manager
Radio-Electronics
5430 Van Nuys Blvd. Suite 316
Van Nuys, CA 91401
1-818-986-2001
Fax 1-818-986-2009

Introducing The SG80 AM Stereo-FM Stereo Analyzer ${ }^{\text {m }}$

Now For The First Time, A High-Performance AM Stereo (C-QUAMI) - FM Stereo Analyzer Integrated Into One Unit, Allowing You To Performance Test, Troubleshoot, And Align To Manufacturers' Requirements

Now
AM STEREO - FM STEREO

LVE ACTION

Catch all the action with the new B\&K-PRECISION 2522 Digital/Analog oscilloscope.

The new B\&K-PRECISION Model 2522 is a full-feature analog scope for live action and a DSO for stop action.

- Full analos and digital operation.
- 20 MHz analos operation.
- $10 \mathrm{MS} /$ second sampling rate on 1 or 2 channels.
- Equivalent time sampling to 20 MHz .
- 2 k memory per channel.
- Pre-trigger capture.

\$1495

A touch of a button switches the 2522 from analos to digital operation. It's an easy-to-operate scope with the performance you need, at a price you'll like.

Don't let the action pass you by. The 2522 will put you on the fast track for performance and results. For immediate delivery or complete specifications, contact your local B\&K-PRECISION distributor.

MAXTEC INTERNATIONAL CORP. Domestic and International Sales 6470 W. Cortland St., Chicago, IL 60635 312-889-1448 • FAX: 312-794-9740
Canadian Sales, Atlas Electronics, Ontario

[^0]: I wish to order the following book:
 \square ANTENNA ENGINEERING HANDBOOK ($322 / 910$)
 \square MODERN ELECTRONIC CIRCUITS REFERENCE MANUAL (404/461)
 \square STANDARD HANDBOOK FOR ELECTRICAL ENGINEERS, 12/e (209/758)TELEVISION ENGINEERING HANDBOOK ($047 / 790$)
 \square STANDARD HANDBOOK OF ENGINEERING CALCULATIONS (287/35X)
 Signature
 Name
 Address/Apt. \#
 City/State/Zip
 This order subject to acceppance by McGraw-Hill. Offer good onlv to new members. Foreign member acceptance subject to special conditions

