Chatio

TURIN ANY PIONE LNTO Ahili-quality SPEAKERPIONE Build R-E's Speaker Mate!

ANALOG-TO-DICHIAL COIVERSOU Experimenting with the IBM PC
$\$ 2.95$ U.S.
$\$ 3.75$ CAN

P红

Introducing SCOPEMETER. There's More Than One Reason to Reach for It.

In fact, there's every reason to reach for ScopeMeter.' Because only ScopeMeter combines the expertise of Fluke and Philips to bring you a dual-channel digital scope along with everything you've come to expect from Fluke digital multimeters.
The result: an integrated scope-and-multimeter that lets you see a waveform and digital meter display at the same time from the same input. Or switch between dedicated high-performance Scope and Meter functions with the touch of a key. That makes it faster and easier than ever to capture, store and analyze precisely what you're looking for. At a price that looks good, too.
To get your hands on a ScopeMeter, contact your Fluke sales office or your nearest Fluke distributor. For more product information, call 1-800-44-FLUKE.
SCOPEMETER. Now there's only one to reach for.

Built to Take It.

- Completely sealed against water, dust and contaminants.
- EMI protected and measures up to 600 volts rms.
- Rugged construction with shock-resistant holster.
- Three-year warrantv from fluke.

Simply Easy.

- Intuitive front panel layout for simple, straightforward operation.
- Pop-up menus and five function keys for easy control.
- Autoset automatically sets voltage,
time and trigger functions.
- Safety-designed BNC connectors and probes simplify floating measurements.

FLUKE 90 SERIES SCOPEMETER SELECTION GUIDE			
	FLUKE 97	FLUKE 95	FLUXE 93
Suggested List Price	\$1795	\$1495	\$1195
Bandwidth	50 Mhez Dual Crannel		
Sample Rate	25 Megasamples/second		
Autoset	Automatically sets Voltage, Time and Triger		
Multimeter Display	$32 / 3$ digits (>3000 Counts)		
True RMS Volts	AC or AC+DC up to 600V (1700V Pk-Pk)		
Diode Test	Up to 2.8V		
Continuity Beeper	Yes		
Time/Division	$10 \mathrm{~ns} / \mathrm{div}$ to $60 \mathrm{sec} / \mathrm{div}$		
Volts/Division	$1 \mathrm{mV} / \mathrm{div}$ to $100 \mathrm{~V} / \mathrm{div}$		$5 \mathrm{mV} / \mathrm{div}$ to $100 \mathrm{~V} / \mathrm{div}$
Digital Delay or Pre-Trigger	By Number of Cycles, Events, Time, or Zoom Mode		By Time
Special Multimeter Modes	Min Max Average Record, Relative (zero), dBm, dBV, dBW, Audio Watts, \% Scale, Frequency, Smoothing,* Change Alert*		Frequency. Smoothing ${ }^{*}$ Change Alert*
Oscilloscope Cursors	12 Measurements. Display 5 Simultaneously		
Glitch Capture	$\geq 40 \mathrm{~ns}$		
Waveform Processing	Average, Variable Persistence, Min Max Record		
Waveform Memory	Store and Recall 8 Wavetorms		
Set-Up Memory	Store and Recall 10 Front Panel Set-Ups		
Waveform Mathematics	Add, Subtract, Multiply, Invert, Filter or Integrate Waveforms		
Signal Generator Output	Sinewave or Squartwave		
Component Tester Output	Voitage or Current Ramp		
$\begin{aligned} & \text { Optically Isolated } \\ & \text { RS-232-C Intertace } \end{aligned}$	Full Operation by Remote Control		
Printer Output	Serial		
Backit Display	Electroluminescent		

Goes Wherever You Go.

- Runs on rechargeable NiCad Batteries, standard C-cells or the included line voltage adapter/battery charger.
- Adjustable tilt-stand comes in handy as a hanger, too.
- Compatible with a wide range of Fluke multimeter accessories.
01991 John Fluke Mrg Co., inc. Ad No. 00075

BUITम THils

35 SWEEP/FUNCTION GENERATOR

Generate square, triangle, and sine waves with this inexpensive benchtop instrument.
Michael A. Lashansky

43 SPEAKER MATE

Turn any regular telephone into a high-quality speakerphone!
David Plant

47 MONITOR TESTER

Troubleshoot computer monitors without hooking them up to a computer.
Garth Price

59 EXPERIMENTING WITH ADC FOR YOUR PC

Build a low-cost automatic data-capture system.
James J. Barbarello

THATMOROGY

33 CABLE TV'S INFAMOUS BULLET

How a New York cable company zapped signal pirates.
Ken Foley
50 WORKING WITH LED'S
A close look at a variety of LED circuits.
Ray Marston

Dఖק: irwix wis

6 VIDEO NEWS

What's new in this fastchanging field.
David Lachenbruch
22 EQUIPMENT REPORTS
McGraw-Hill Science \&
Technical CD-ROM.
69 HARDWARE HACKER
VGA adapter for the Mac LC, computer monitors, and more. Don Lancaster

73 AUDIO UPDATE

Reader questions. Larry Klein

75 DRAWING BOARD

More on automotive voltage regulators.
Robert Grossblatt
84 COMPUTER CONNECTIONS
The future of multimedia mayhem.
Jeff Holtzman

PAGE 33

PAGE 63

ATD HORE:

96 Advertising and Sales Offices

96 Advertising Index
12 Ask R-E
14 Letters
86 Market Center
30 New Lit
24 New Products
631991 Annual Index
4 What's News

OU Tri: COUP:

Even though a dependable function generator and frequency counter are invaluable pieces of test equipment-ones that are a necessity on a professional test benchthey're often simply beyond the means of the hobbyist. Until now, that is. Our sweep/function generator and frequency counter produces up to a $2.5-\mathrm{MHz}$ square, triangle, or sine-wave output with a 1 - to 20 -volt peak-to-peak amplitude, and it costs just $\$ 300$ to build. In addition, the instrument features a TTL or CMOS 0.5 - to 15 -volt peak output, and can be used as a 150 MHz frequency counter. For all the details, turn to page 35 .

COMING NT: MT MOLTH:

THE FEBRUARY ISSUE GOES ON SALE JANUARY 7.

BUILD THIS SCANNER CONVERTER

It allows unrestricted coverage of the $800-\mathrm{MHz}$ band.

CIRCUIT COOKBOOK

Our in-depth survey of LED's continues with practical chaser and bargraph circuits.

SWEEP/FUNCTION GENERATOR AND FREQUENCY COUNTER

Part II provides all the construction details.

NEW LIFE FOR AM RADIO?
Will AMAX receivers breathe new life into the AM band?

[^0]
Er eritiminies.

Hugo Gernsback (1884-1967) founder
Larry Steckler, EHF, CET, editor-in-chief and publisher

EDITORIAL DEPARTMENT
Brian C. Fenton, editor
Marc Spiwak, associate editor
Kim Dunleavy,
assistant technical editor
Teri Scaduto, assistant editor
Jeffrey K. Holtzman computer editor
Robert Grossblatt, circuits editor Larry Klein, audio editor
David Lachenbruch contributing editor
Don Lancaster contributing editor
Kathy Terenzi, editorial assistant
ART DEPARTMENT
Andre Duzant, art director
Injae Lee, illustrator
Russell C. Truelson, illustrator
PRODUCTION DEPARTMENT
Ruby M. Yee, production director
Janice Box, editorial production
Karen S. Brown advertising production
Marcella Amoroso productionassistant

CIRCULATION DEPARTMENT

Jacqueline P. Cheeseboro circulation director
Wendy Alanko circulation analyst
Theresa Lombardo
circulation assistant
Michele Torrillo, reprint bookstore
Typography by Mates Graphics
Cover photo by Diversified Photo Services

Radio-Electronics is indexed in Applied Science \& Technology Index and Readers Guide to Periodical Literature.
Microfilm \& Microfiche editions are available. Contact circulation department for details.

Advertising Sales Offices listed on page 96.
Radio-Electronics Executive and Administrative Offices 1-516-293-3000.
Subscriber Customer Service: 1-800-288-0652. Order Entry for New Subscribers: 1-800-999-7139.

The
Audit
Bureau
of Crrculation
E19
$3-4$
 -Limited dime only, no discounts and no trade ins. Made in the U.S.A.

- Full range -10 Hz to 3 GHz .
- LCD display (daylight visibility).
- True state-of-the-art technology with the high speed ASIC.
- NiCads \& Charger included.
- Ultra-high sensitivity. $\cdot 4$ gate times.
- Extruded metal case. - Compatible with MFJ207.

Suggested options
TA100S: Telescoping Whip Antenna....................\$ 12.
CC30 Vinyl Carry Case................................... \$ 14.
BL10: LED Backlight....................................... \$ 15.
BL28: El Backlight for use in roomlight and low light. \qquad \$ 45.
BG28: Bargraph Signal Level Indicator............. $\$ 100$.
TCXO 30: Precision $\pm 0.2 \mathrm{ppm} 20$ to $40^{\circ} \mathrm{C}$ temp. compensated time base.
. $\$ 100$.

5821 NE 14th Ave. • Ft. Lauderdale, FL 33334 5% Ship/Handling (Max. \$10) U.S. \& Canada. 15\% outside continental U.S.A. Visa and Master Card accepted.

Call for free catalog - Factory Direct Order Line:

$$
1-800-327-5912
$$

FL (305)771-2050 • FAX (305)771-2052

WHAT'S NBWS

A review of the latest happenings in electronics.

Wireless data communication for mobile workers

Incorporating Motorola's RPM400i radio packet modem, a notebooksize, battery-operated computer from IBM (White Plains, NY) will allow users to access and input information to a mainframe computer from remote locations. Service technicians, for instance, could use the 9075 PCradio Model 002 to obtain technical information or order emergency parts without leaving the job site. The modem incorporates the smallest and lightest data radio currently available, according to Motorola. The PCradio operates over the ARDIS network, a partnership of IBM and Motorola that was formed last year to provide nationwide wireless communications to Fortune 1000 companies, and the Mobidata network in Canada. The unit uses an 80C186 microprocessor and operates at either 5 or 10 MHz . The model 002 , whose wireless modem operates at up to 4800 bps, can also be used with telephone communications networks (at 2400 bps). PCradio can send or receive fax copies over cellular networks at up to 9600 bps and over

INCORPORATING MOTOROLA'S radio packet modem, IBM'S PCradio can provide a wireless link to larger IBM computers via radio or cellular-based communi-cations-ideal for police officers checking license-plate numbers, sales reps requiring immediate information on product inventories, or service technicians ordering emergency parts.
landlines at 2400 bps . On cellular networks, with an optional handset. PCradio can be used as a telephone. Two other PCradio models will also be available: The model 001 is a basic unit for conventional telephone communications; the model 003 is designed for cellular-based communications, includes a cellular modem, and can also be used with standard telephone networks. As we go to press, FCC approval has just been granted.

Highly sensitive moisture sensors

Researchers at Sandia National Laboratories (Albuquerque, NM) have fabricated from silicon extremely sensitive moisture sensors capable of making accurate humidity measurement inside IC's.

Besides their excellent sensitivity and quick response time, the sensors offer several other advantages, including consistent performance at temperatures higher than $100^{\circ} \mathrm{C}$. But their primary advantage lies in the fact that because they are made of silicon-the same basic material used to manufacture IC's-the sensors can be made by manufacturing methods that are compatible with the standard techniques used to make IC's. That "complete compatibility" of equipment and procedures holds the promise of the future manufacture of so-called "smart sensors" that combine the sensor and microelectronic logic elements on the IC chip. That opens the door to such applications as environmental control in buildings by integrating a smart humidity sensor within heating, ventilation, and air-conditioning (HVAC) systems.

The capacitor-type sensors use a material known as oxidized porous silicon (OPS) as the moisture-adsorbing dielectric between the two electrodes in the capacitor. When water vapor contacts the sensor, it permeates through the porous volume between the electrodes, causing a net change in the dielectric
constant of the porous volume, which is then monitored by measuring the capacitance of the device.

Law-enforcement aircraft

A light utility aircraft has been specially modified by the British company Pilatus Britten Norman to accommodate state-of-the-art surveillance and anti-narcotic detection equipment manufactured by Westinghouse Electronic Systems Group (Baltimore, MD). The modified plane, known as the Multi-Sensor Surveillance Aircraft, or MSSA, features

THE WESTINGHOUSE Multi-System Surveillance Aircraft (MSSA), a specially modified light plane fitted with advanced detection and interdiction technologies, is designed for law-enforcement and antinarcotic surveillance missions.
a unique, bulbous nose that provides enough room for the installation of sensors and avionics systems, including the radar and infrared imaging system that form the heart of the MSSA's ability to detect and track unusual activity on the ground or in the air, night or day.
In addition to the radar (a version of the one supplied by Westinghouse for the USAF's F-16 fighter) and the infrared system (similar to that used by the U.S. Coast Guard), the MSSA has a high-tech operations console and an advanced communications system that put the plane's capabilities at the fingertips of an onboard operator and link them to support personnel in the air or on the ground. The aircraft, which is intended for use in drug interdiction, lawenforcement surveillance, border and fisheries patrol, airspace control, etc., was scheduled to be available by the end of 1991.

R-E

SCOPE Analog Lab
Salel NOW \$19000

Model SC-6000

- 5 Frea Ranges - Variable Positive Power
- Potentiometer

Feature Packed! HITACHI Oscilloscope

Now \$ 125^{00} save

Model V-212 Dual Trace

-DC to 20 MHz imjudy
-6. Rectangular Scteen
PROBES INCLUDED:

\section*{| ASK FOR YOUR FREE CATALOG |
| :--- |
| 260 Motor Parkway. Haupdauge. New York 71788 |}

Model V-355

- 19 caidrated SMeeps
-6^{+}CRT • Auto Focas
PROBES INCLUDED

Proto-Board Station Special: ${ }^{519 g 0^{2}}$

Model SC-9000A

-3 Wire AC Line indut - Function Cenerator -Tinile Power Suppli
-8 loge leDs

HITACHI Dual Trace Oscilloscope NOW \$50,000

Best Value!

VIDEO NEWS

What's new in the fast-changing video industry.

> DAVID WACHENBRUCH

- "Flat" tubes. The catch-phase for next year's color TV sets will be "flat tubes." Panasonic was the first in this latest flat-tube wave, introducing the "SuperFlat" under its premium Prism brand name. The SuperFlat scored a big success in Japan under the name "Gao," which means "king of pictures." The tube has a computer-designed faceplate which isn't really flat but has considerably less curvature than a conventional tube. In addition, the faceplate is extremely dark, providing more contrast, and new electronics supply the power and focus to realize the contrast without a loss of brightness and detail.

Not to be outdone, most other Japanese companies are now preparing their flatter tube versions. Sony will field a "Super Trinitron" in the United States in 1992, and Hitachi, Mitsubishi, and Toshiba are also flattening out their faceplates in Japan. All of this raises the question: What is "flat"? In a previous go-round, Toshiba developed the "FST," which originally stood for the "flat square tube." However, the tube wasn't either flat or square, so Toshiba changed the phrase to "flatter squarer tube," still preserving the acronym "FST."

Thomson Consumer Electronics, whose European tube operation has been selling a tube with a computerdesigned faceplate-not quite flat. but with a flat appearance-took a poke at Panasonic's SuperFlat at a recent trade show with the slogan, "Super Planar, world's first super flat tube- 4 million sold to date." Then along came Zenith, which is developing a truly flat-faced tube, the FTM (for "flat tension mask") tube that uses a piece of plate glass for a face. Zenith filed a complaint with the Better Business Bureau's National Advertising Division urging it to stop manufacturers from advertising "reduced curvature" tubes as "flat." But, somehow, "SuperReducedCurvature" doesn't have that special ring
to it. How about going back to "Gao?"

- Digital sound for VHS. First there was a longitudinal monophonic audio track on VHS, then longitudinal stereo, then hi-fi helical stereo. Now, finally, digital stereo is here. In Japan, JVC, Panasonic, Mitsubishi, Hitachi, and Sharp have introduced Super VHS recorders with digital audio tracks. The digital sound will be available only with S-VHS because the layout of the standard VHS signal doesn't have enough space for digital audio. The digital-sound recorders, having analog longitudinal and helical tracks as well, are compatible with previous recorders. The digital-audio system can record two channels at $48-\mathrm{kHz}$ sampling frequency, 16 bits. or four channels at $32 \mathrm{kHz}, 12$ bits. Principal use of the recorders in Japan will be the tape satellite broadcasts that have digital audio. There's no word on whether the digital-sound recorders will be exported.
- Public electronics show. The latest advances in TV's, VCR's, camcorders, and home multimedia products will be on display to the public as the Consumer Electronics Show (CES) in Chicago opens its doors to actual "consumers" for the first time in its 25 -year history. It's expected to attract as many as 100,000 visitors from the Chicago area and beyond. In the past. CES has been for the trade only, but this year's show, which will run from May 28 through May 31, will have two public days. May 28 and 29 will be trade-only days, as will the morning of Saturday, May 30, but the show will be open to all visitors from noon Saturday through 6 PM Sunday at the McCormick Convention Center and the Hilton Hotel. The nominal admission price will be $\$ 10$, but it's expected that dealers and exhibitors will distribute cut-rate tickets. The show's sponsor is the Electronic Industries Association's Consumer Electronics Group (EIA/CEG).

Camcorder format war. The 8 mm format was the clear winner in 1991 in the battle of the camcorder formats, with the VHS-C (compact) and full-size VHS models trailing with about equal shares. The EIA tallies sales of "compact" VCR's and fullsize VHS. The "compact" category includes both 8 mm and VHS-C. For the six months from April through September 1991, compacts outsold full-size units by 70% to 30% (but for the nine months through September, full-size models represented 33.2% of the total). The EIA doesn't break down compacts between VHS-C and 8 mm , but the U.S. Commerce Department keeps track of imports of 8 mm as a separate category, without breaking down between VHS and VHS-C model imports. In the latest available figures, for 1991's first seven months, 8 mm constituted 42% of imported camcorders. Applying these figures to the EIA's data, this indicates that the ratio in 1991 worked out to roughly $40 \% 8 \mathrm{~mm}$ and 30% each VHS-C and full-size VHS.

But don't count VHS-C out. The VHS-C proponents, led by Panasonic and JVC, are mounting a major campaign stressing compatibility of VHSC with VHS home VCR decks by means of the VHS adaptor that comes with all VHS-C camcordersnot to mention a forthcoming generation of VCR's that can accept both VHS and VHS-C cassettes without adaptors.
The latest trends in camcorders include "digital zoom," an electronic extension of optical zoom to provide as much as 100:1 zoom ratio, at least theoretically. At that magnification, however, so much detail is lost that the picture isn't very viewable. Other trends are color LCD viewfinders; internal titles, including pre-selected on-screen messages such as "Birthday Party," "Wedding," "Our Vacation." etc.; and remote controls to permit the user to operate the tripodmounted camcorder while he or she is in the picture.

R-E

48 HOUR SHIPPING ELENCO \& HITACHI PRODUCTS AT DISCOUNT PRICES

Hitachi RSO Series

(Portable Real-time Digital Storage Oscilloscopes) VC-6023-20MHz, 20MS/s \qquad \$1,695 VC-6024 - $50 \mathrm{MHz}, 20 \mathrm{MS} / \mathrm{s}$ \qquad \$1,995
VC- $6025 \cdot 50 \mathrm{MHz}, 20 \mathrm{MS} / \mathrm{s}$ \qquad \$2,195 VC-6045-100MHz, 40MS/s \qquad \$2,995 VC-6145-100MHz, $100 \mathrm{MS} / \mathrm{s}$ $\$ 4,495$ RSO's from Hitachi feature roll mode, averaging, save memory, smoothing, interpolation, pretriggering, cursor measurements. These scopes enable more accurate, simplier observation of complex waveforms, in addition to such functions as hardcopy via a plotter interface and waveform transter via the RS-232C interface. Enjoy the comfort of analog and the power fo digital.
25MHz Elenco Oscilloscope
 \$349
S-1325

- Dual Trace - 1 mV Sensitivity - $6^{\prime \prime}$ CRT - X-Y Operation - TV Sync
- (2) $1 \mathrm{x}, 10 \times$ Probes included

SPECIAL BUY

V-212-20MHz Scope $\$ 425$

Hitachi Portable Scopes
DC to $50 \mathrm{MHz}, 2$-Channel, DC offset function, Alternate magnifier function V-525 - CRT Readout, Cursor Meas. $\$ 995$ V-523 - Delayed Sweep _ $\$ 975$ V. 522 - Basic Model \qquad $\$ 875$
V-422-40MHz \qquad $\$ 775$
V -223 -20 MHz delayed sweep \qquad $\$ 695$
V -222-20MHz deluxe \qquad
\qquad $\$ 625$

HITACHI COMPACT SERIES SCOPES

This senes provides many new functions such as CRT Readout, Cursor measurements (V-1085/1065A/665A), Frequency Ctr. (V-1085), Sweeptime Autoranging. Delayed sweep and Tripper Lock using a 6 -inch CRT.You dont feel the compactness in terms of performance and operation.

V-660-60MHz, Dual Trace \qquad \$1.149 V-665A - 60 MHz , DT, w/cursor \qquad \$1,345 $\mathrm{V}-1060-100 \mathrm{MHz}$, Dual Trace \qquad V-1065A - 100 MHz , DT, w/cursor V-1085-100MHz, QT, w/cursor \qquad $\$ 1,649$ V-1100A -100 MHz , Quad Trace \qquad \$1,995 V-1150-150MHz, Quad Trace \qquad \$2,695

Elenco 40 MHz Dual Trace

 \$495 - Includes (2) 1x, $10 x$ Probes

All scopes include probes, schematics, operators manual and 3 year (2 yrs for Elenco scopes) world wide warranty on parts \& labor. Many accessories available for all Hitachi scopes. Call or write for complete specifications on these and many other fine osciloscopes. 1x, 10x Scope Probes: P-1 $65 \mathrm{MHz} \$ 19.95, \mathrm{P}-\mathbf{2} \mathbf{1 0 0 M H z} \$ 26.95$

If You're Serious About a Future in Electronics, Ensure that Future with the Best Educational Training Available. electronics
f you want to learn about electronics, and earn a good income with that knowledge then CIE is your best educational value.

CIE's reputation as the world leader in home study electronics is based solely on the success of our graduates. And we've earned that reputation with an unconditional commitment to provide our students with the very best electronics training.

Just ask any of the 150,000 -plus graduates of the Cleveland Institute of Electronics who are working in high-paying positions with aerospace, computer, medical, automotive and communication firms throughout the world.

They'll tell you success didn't come easy...but, it did come....thanks to CIE. And today, a career in electronics offers more opportunities and greater rewards than ever before.

CIE's COMMITTED TO BEING

 THE BEST....IN ONE AREA....ELECTRONICS.CIE isn't another be-everything-toeverybody school. We teach only one subject and we believe we're the best at what we do. Also, CIE is accredited by the National Home Study Council. And with more than a 1,000 graduates each year, we're the largest home study school specializing exclusively in electronics. CIE has been training career-minded students like yourself for nearly 60 years and we're the best at our subject ELECTRONICS ... BECAUSE IT'S THE ONLY SUBJECT WE TEACH!

CIE PROVIDES YOU WITH A LEARNING METHOD SO GOOD, IT'S PATENTED.

CIE's Auto-programmed lessons are a proven learning method for building valuable electronics career skills. Each lesson is designed to take you step-bystep and principle-by-principle. And while all CIE lessons are designed for independent study, CIE 's instructors are personally available to assist you with just a tollfree call. The result is practical training... the kind of experience you can put to work in today's marketplace.

LEARN BY

 DOING...WITH STATE-OF-THE-ART FACILITIES AND EQUIPMENT. In 1969, CIE pioneered the first Electronics Laboratory course and in 1984, the first Mircoprocessor Laboratory course. Today, no other home study school can match CIE's state-of-the-art equipment and training. And all your laboratory equipment, books, and lessons are included in your tuition. It's all yours to use while you study at home and for on -the -job after graduation.
PERSONALIZED
 TRAINING....TO MATCH YOUR BACKGROUND.

While some of our students have a working knowledge of electronics others are just starting out. That's why we've developed twelve career courses and an A.A.S. Degree program to choose from. So, even if your not sure which electronics career is best for you, CIE can get you started with

WHY CHOOSE CIE FOR YOUR TRAINING?

- 150,000 successful graduates from every country around the world.
- Only CIE rewards you for fast study. CIE offers an Associate Degree program based on actual study time used. The faster you complete your degree the less your overall tuition.
- State-of-the-art laboratory equipment is yours to keep and it comes assembled, ready for hands-on experiments.
- Approved for educational benefits under the G.I. Bill for veterans and other eligible persons.
- Upon graduation, CIE offers free preparation to pass the Certified Electronics Technician Exams.

core lessons applicable to all areas of electronics. And every CIE course you take earns you credit towards completion of your Associate in Applied Science Degree. So you can work toward your degree in stages or as fast as you wish. In fact, CIE is the only school that actually rewards you for fast study, which can save you thousands of dollars.

SEND TODAY FOR YOUR CIE COURSE CATALOG AND WE'LL SEND YOU A FREE 24 PAGE CIE ELECTRONICS SYMBOL HANDBOOK!

FINANCIAL AID AVAILABLE TO QUALIFIED INDIVIDUALS.

ASK B-E

Write to Ask R-E, Radio-Electronics, 500-B Bi-County Blvd., Farmingdale, NY 11735

Abstract

AUDIO LIGHT I'd like to build a device that will turn on a light if the decibel sound level of a band exceeds a preset level at a distance of $\mathbf{7 5}$ to 100 feet. I'd like the device to be adjustable between 60 and 120 decibels, and when the sound hits the preset level a light will come on and stay on until the sound drops again. Do you have something that can help me?-C. Jones, Broken Arrow, OK

Every time I go to a wedding or other large family affair I think about building something like that. It seems that I always wind up sitting right in front of the band's speakers.

Seriously though, this isn't a difficult thing to design but you can get yourself terribly confused by thinking about things like the distance in feet or the sound level in decibels. What you're really talking about is building yourself an amp to drive a simple VU meter that can be scaled for really high sound levels. Calibrating it to detect a particular sound level at a particular distance should be just a matter of tweaking a potentiometer.

The easiest way to put together a circuit like this is to build it around one of National Semiconductor's LM3915's. That chip will take an analog signal, do all the voltage scaling for you, and give you ten logarithmic outputs that are just what you want for a VU meter. While it's a really simple chip to use, I would suggest very strongly that you get a data sheet for it before you start using it.

The circuit in Fig. 1 is a good beginning for the project you have in mind. It will take four mike inputs, amplify them, and use the outputs to drive an LM3915 set up as a VU meter. One of the nice things about the LM3915 is that simply switching one connection will give you either a bar or dot output. The schematic has the chip arranged for a dot output since you're interested in having a light trigger from only one of the outputs. When you build the circuit, you can hang up to four mikes around the room and use

FIG. 1-TO TURN ON A LIGHT whenever the sound level in a room exceeds a preset level, you can use one of National Semiconductor's LM3915's (see text).
the potentiometer shown in the schematic to calibrate the LM3915 outputs any way you want.

Even though l've shown the LED's connected to the chip's outputs, you'll probably want to use one of the outputs to trigger the light you referred to in your letter. I have no idea how bright a light you want to use, but it's a safe bet that you won't be able to connect the bulb directly to any of the outputs of the LM3915. You just won't be able to get the drive current you need.

You can, however, use any of the

FIG. 2-TO DRIVE HEAVY current loads with an LM3915 output, you must add a transistor as shown here.

LM3915 outputs to drive a transistor as shown in Fig. 2, without having to disconnect the LED. Even a smallsignal transistor such as a 2 N 2222 is chunky enough to light a bright ninevolt bulb as shown. If you want a larger bulb-something like an AC line powered 100-watt bulb-use the transistor's output to power a relay whose contacts can handle the current required by the bulb. A relay with contacts rated at two amps would certainly be more than adequate.

COMMERCIAL LIMITER

I've reached my limit as far as television commercials are concerned since some of them are so loud I'm afraid they're going to destroy the speaker in my television set. l've been looking for a circuit that would detect a rise in volume and reduce the level going to the speaker. I found a circuit called the "Commercial Zapper" in an old issue of RadioElectronics (Feb., 1983), but it blanks out the audio and all I want
to do is reduce it. Do you have anything that will help solve my problem or at least point me in the right direction?-D. Alford Jr., Libuse, LA

I'm fully aware of the problem you're talking about. I don't know how it's possible for people to fall asleep in front of the TV any more since every time I try it, the commercials keep waking me up. Nothing is more annoying than just being on the verge of flaking out during some mindless pap on the tube and being jolted awake by some voice screaming out the virtues of four wheel drive, gourmet dog food or the dirt-eating power of an old detergent in a new box. Maybe we should all stick to public television. pledge drives and all.

The FCC sets strict limits on the audio level that can be sent over the publicly owned (that includes you and me) airwaves and, believe it or not, the people whose grand mission in life is to say as little as they can in as many words as possible always manage to stay within the FCC limits. I've read studies about this and even did some of my own spot measurements to verify it. I'm sorry to report that we can't get them for a violation of the FCC guidelines.

Most of the program audio on the tube has a dynamic range that goes from dead silence to the maximum allowed. The people responsible for the commercials you're complaining about keep the audio level up near the top most of the time and, as far as silence goes, hey, they're paying for thirty seconds and unfortunately they can do anything they want with that time-however obnoxious it might be.

The "Commercial Zapper" you saw in Radio-Electronics was designed to put VCR's in pause during commercials so you could automatically eliminate them while you were taping black-and-white movies. The theory behind it was that the colorburst reference signal would be absent during the movie and present only during the commercials. By detecting burst, you could tell when a commercial was coming on and output a signal that would put your VCR in pause.

Most broadcasters leave the burst signal active all the time now, even during black-and-white transmis-
sions, so the Commercial Zapper, while great back then, wouldn't do a lot for you now. And, since you want to reduce only the level of the sound, there are much better ways to get the job done.

Before we start talking about schematics and circuits, there's one big thing you should keep in mind. Modifying any of the stuff inside your TV, even just the audio circuits, can be an extremely dangerous undertaking. Owning a TV set is kind of like being married-it can give you a lot of pleasure if you sit back and enjoy it but you can be in for a lot of trouble if you open it up and fool around with the way it works. There are lots of hazardous components in a TV and they're operating at voltages that can kill you if you're not careful about what you're doing.

If you don't have a good deal of electronic experience under your belt, you should stop reading this right now and switch most of your viewing to public television. Be warned about the hazards in involved.

In order to automatically cut the level of the audio from your TV when it reaches a preset level, you're going to have to modify the audio circuitry in the TV-or at least be able to identify it so you can add to it. You shouldn't do anything to your TV unless you have the paperwork and service manuals so you can locate and identify the circuitry that deals with the audio.

If you don't have or can't get the paperwork but are still determined to modify it, the safest places to get the audio are either at the volume control or the speaker. Unplug the TV from the wall and VERY CAREFULLY discharge the second anode and highvoltage capacitors to avoid a possible shock hazard. Modern TV's use very low leak components and they can hold a charge for a long time.

The circuit you're looking for is an audio limiter-one that will turn the volume down for you whenever the sound gets too loud. Since it's difficult to modify the TV's existing audio circuitry, the best way to do it is to run the audio through a small add-on board. There are lots of limiter circuits but l've been using the limiter circuit shown in Fig. 3 for several years in several applications.

All the current that is drawn by the continued on page 82

Home Automation from Heath, the catalog that has it all...

Enter the world of Home Automation. Remote lighting and appliance controls. Security alarms and lighting. Automated thermostats. Video monitoring systems. Whole-house security systems. They're all yours in the Heath Home Automation Catalog. To

receive your FREE copy, call today toll-free.

1-800-44-HEATH (1-800-444-3284)

Heath Company

Marketing Dept. 020-130
Benton Harbor, MI 49022
CL. 607R1

13

Write to Letters, Radio-Electronics, 500-B Bi-County Blvd., Farmingdale, NY 11735

DIGITAL SINEWAVE GENERATOR

I enjoyed the article "Digital Sinewave Synthesizer" by Steven D. Swift (Radio-Electronics. October 1991). About three years ago, I designed an almost identical circuit for work. I needed a precisely controlled sinewave generator that produced six specific frequencies. Based on my experience, I have some comments for the more advanced and creative hobbyists who are building this project.

I have not looked at the contents of the author's EPROM, but Fig. 2-c on page 44 led me to believe that his sine-lookup table contains the zerocrossing values of 80 H at 0° and 180° on the waveform. Harmonic distortion can be slightly reduced if the table is offset slightly from these values (by adding 0.5 degrees to the calculation, for example). I can prove this mathematically, but the reasoning might be clearer if you think of the zero crossings as crossover notch distortion. The rate of change of amplitude of the sinewave should be maximum at the zero crossings. It shouid not dwell there. The theoretical limit of the THD is 0.7% (for 256 steps in an 8-bit EPROM) if this suggestion is followed.

The author's circuit shows a discrete implementation that should work perfectly. Large programmable logic devices, such as the EP1800 series, have architectures ideally suited to the adders and registers that form the heart of the circuit. That is how I implemented my circuit. If only a few output frequencies are required, a second programmable logic device or an array of gates can be used to generate the " A " inputs to the adders. That reduces the flexibility of the circuit, but also eliminates the hassle of looking up binary codes.

If dual outputs are required, two circuits that are clocked by the same clock generator can be constructed. Those outputs can be locked to4 gether in phase, or varied in phase if
an offset generator is placed between the " S " outputs and the second sine-lookup table EPROM. That then makes possible 26 discrete phases.

The author's circuit has no adjustment for amplitude or phase. Those can easily be added in one more opamp stage. When I constructed my circuit, I had to back off from 8 bits of resolution at higher frequencies. That caused no problems because higher frequencies were nearer the corner frequency of the low-pass filter, and, therefore, harmonics caused by larger steps were attenuated anyway. BRUCE CARTER

Port Orange, FL

AUDIO SWEEP/MARKER GENERATOR UPDATE

Anyone building my "Audio Sweep/Marker Generator" (RadioElectronics, February and March 1991) might encounter a problem that we cannot explain. It concerns IC11. an 8 -input NAND gate. Two sources of information on the pinout arrangement show that there is no internal connection to pin 1. In the PC layout, pin 1 is connected to pin 2 to make the foil pattern layout a little simpler. That arrangement worked well with my prototype. However, I am indebted to Mr. Gordon La Grange of Baytown, TX, for pointing out that he had to snip off pin 1 before he could get a proper output from the NAND gate. That output is not shown properly in Fig. 13-e on page 59 in the March issue. The correct output is properly described in the paragraph almost directly below Fig. 13-k. If you invert the pulses in Fig. 13-e and make them no wider than a single line width, you'll have a correct picture. JOHN WANNAMAKER

TRUE TESLA COIL?

In the article entitled "Solid-State Tesla Coil" (Radio-Electronics, September 1991), the circuit is described as an end-fed Tesla coil.

I would like to point out that, in
actuality, this is not a true Tesla coil, in that Tesla dealt with separately tuned circuits (the primary and the secondary). While it is true that Tesla did use an end-fed resonator in his Colorado Springs "Magnifying Transmitter," an actual RF-coupled coil was used as the signal generator.
The basic idea for an end-fed resonator was devised by a French inventor named Dr. Paul Oudin, who based his work on the experiments of another Frenchman, D'Arsonval. D'Arsonval's work centered around what is known as the D'Arsonval Solenoid. Its purpose was to create, via an inductive/capacitive tank circuit, therapeutic RF currents to treat various bodily dysfunctions. Oudin reasoned that high voltages could be produced if one were to attach a second coil to D'Arsonval's tank circuit.
If one examines Tesla's patents related to his work in early radio, it becomes quite evident that the true definition of the Tesla coil must include separate circuits.

I would also like to comment on the size of the secondary coil in the project. In the case of Tesla's Magnifying Transmitter, the extra (or free-resonant) coil's inductance was actually very low in comparison to the secondary winding that was driving it. The main problem is one of adjusting the frequencies so that the resonant coil runs in the current-fed mode, rather than becoming a simple extension of the driving primary. In the case of the Radio-Electronics project, that would imply that the external secondary winding could behave simply as additional windings of the highfrequency ferrite transformer, T2.

If any readers wish further clarification on this, I would suggest the manuscript entitled "Tesla Coils-An RF Power Processing Tutorial for Engineers," by Kenneth \& James Corum, Ph.D's. It's available from Corum \& Associates, 8551 State Route 534. Windsor, OH 44099.
BRENT C. TURNER
Villa Park, CA

TUBE AMPLIFIERS REVISITED

At this late date, I would like to add my two cents worth to the ongoing discussion on tube audio amplifiers. I must first admit that I like tube amplifiers and have built several of them myself.

I believe that correctly designed tube and solid-state amplifiers probably do sound the same, as long as you don't drive either one into clipping. However, to never drive an amplifier into clipping at any point in its circuit requires that sufficient voltage and current be available from each stage, so as to always meet the demands made by the next device. In most tube audio amps, everything up to the final stage is run in Class A1, where the tube is a pure transconductance device, whereas a transistor requires current.

Another advantage to tube amps is the fact that they operate at low currents and high voltages. It is much easier to make such a supply smoother and "stiffer." Modern highend amplifiers and home-built ones made by knowledgeable "audio amateurs" use very large values of filter capacitance in their power supplies to provide a high level of reserve input voltage.

Finally, tube amps are simpler and use fewer active devices. The classic Dynaco uses one voltage-amplifier tube and one phase-inverter triodeboth in one envelope as a 7199-to drive its output tubes; the notorious Carver Silver Seven uses essentially the same basic circuit. A solid-state amplifier comparable to the Dynaco, using only discrete parts, would use two dozen transistors.

So, while I must admit that there are some great solid-state amplifiers, lam going to stick with the tube ones. The tubes are still available, the transformers can be found, and the electrical power to run the heaters doesn't cost much. The added benefit to my home-built tube gear is that I had a lot of fun building it and spent very little money.
CHRIS L. DONALDSON
Blue Springs, MO

COMPUTER CLASHES CONTINUED

I really do think that Mr. Cheng's comments in the April "Letters" column went a bit far-and so did Mr.

Holtzman's reply. The entire exchange brings to mind the old tale about the blind man and the elephant; it really is tough to discern the big picture through all the fog. As one who has programmed extensively for 80X86 PC's. Amigas, and other computers, I have more comments than I can fit in a reasonably sized letter. A few will have to do.

First, on standardization: As Mr. Holtzman pointed out, the desirable part about standardization is that it facilitates communication. There are two flip sides. One is that many software (as well as hardware) suppliers don't want communication. Suppliers of programs for CAD and music scoring are especially notorious-they want you locked in tight. The second is that standards are often ages out of date-witness the NTSC television standard-to the point of stifling innovation.

The niche machines are a paradox. They owe their existence to the fact that in one important sense they are more standardized than PC's. No two PC's are alike, even in such fundamentals as memory organization, video graphics layout, and interrupt organization. As we all know, that causes no end of problems. Within the CPU itself, the instruction set is an unstandardized chaos, having on the order of a thousand individual quirks. Even the largest, best-capitalized organizations have been able to cope with that, so that compiled code tends to be a wretchedly suboptimal joke. The lessons of the old mainframes have yet to be learned.

The upshot is that things that aren't done often enough to support multi-billion-dollar software companies are often best done on niche machines, especially if speed, large memory, or a GUI is desired, or interrupts are needed. Sure, a Lotus or a Microsoft can handle the problems caused by dozens of graphics drivers, dozens of extended memory drivers, more than 500 printer drivers, dozens of slightly different serial and parallel ports, hundreds of quirky BIOS variants, and hundreds or maybe thousands of hard-disk variants. The person who writes a specialized program for filter analysis and sells a few hundred copies probably can't make it multi-compatible, except by resorting to lowest-common-denominator user

Earn Your B.S. Degree in ELECTRONICS or COMPUTERS

By Studying at Home

Grantham College of Engineering, now in our 41st year, is highly experienced in "distance education"teaching by correspondence-through printed materials, computer materials, fax, and phone.

No commuting to class. Study at your own pace, while continuing on your present job. Learn from easy-tounderstand but complete and thorough lesson materials, with additional help from our instructors.

Our Computer B.S. Degree Program includes courses in BASIC, PASCAL and C languages - as well as Assembly Language, MS DOS, CADD, Robotics, and much more.

Our Electronics B.S. Degree Program includes courses in Solid-State Circuit Analysis and Design, Control Systems, Analog/Digital Communications, Microwave Engr, and much more.

An important part of being prepared to move $u p$ is holding the right college degree, and the absolutely necessary part is knowing your field. Grantham can help you both waysto learn more and to earn your degree in the process.

Write or phone for our free catalog. Toll free, 1-800-955-2527, or see mailing address below.

Accredited by the Accrediting Commission of the National Home Study Council

GRANTHAM College of Engineering Grantham College Road Slidell, LA 70460

Electronics Paperback Books

(1)BP248-TEST EQUIPMENT CON. STRUCTION $\mathbf{\$ 5 . 9 5}$. Details construction of simple, inexpensive, but extremely useful test equipment. AF Gen, Test Bench Ampl, Audio Millivoltmeter, Transistor Tester and six more.

GREAT PAPERBACKS AT SPECIAL PRICES

BP267-HOW TO
USE OSCILLO-
SCOPES AND
OTHER TEST EQUIP.
MENT.... S6.95. Mas-
tering the oscilloscope
is not really too difficult.
This book explains all
the standard controls
and functions. Other
equipment is also de-
scribed.
BPP265-MORE
ADVANCED USES
OF THE MURN Novanced
METER..... $\$ 5.95$. Use
these techniques to
test and analyze the
performance of a vari-
ety of components.
Also see how to build
ad-ons to extend multi-
meter capabilities.

—BP256-INTRO TO LOUDSPEAKERS AND ENCLOSURE DESIGN \$5.95. We explore the variety of enclosure and speaker designs in use today so the reader can understand the principles involved.

\square BP260-CONCISE INTRO TO OS/2 $\$ 5.95$. If you are a multitasking PC user and want to get the most out of your computer, then you must learn its OS 12 operating systern. This book shows you just how to do that, quickly and easily.

DBP249-MORE ADVANCED TEST	Montive
EQUIPMENT CONSTRUCTION	Comiruchio
\$6.95. Eleven more	
test equipment con-	
They include a digital voltmeter, capacitance	
meter, current tracer	

IIBP257-INTRO TO AMATEUR RADIO $\$ 6.95$. Amateur is a unique and lascinating hobby. This book gives the newcomer a comprehensive and easy to understand guide to the subject.

PCP102-INTRO. dUCing digital au DIO \$9.95. Covers all kinds of digital recording methodsCD, DAT and Sampling. Bridges the gap between the technician and the enthusiast Principles and meth-PCP108-COM-
PUTERS AND MUSIC
..... 59.95 . Explains the basics of computers and music with no previous knowledge of computers needed Covers types of music software and explains how to set up your own computer music studio.
 ods are explained.

PCP107-DIGITAL LOGIC GATES AND FLIP FLOPS $\$ 10.00$. Thorough treatment of gates and flip-flops for enthusiasts, student and technicians. Only a basic knowledge of electronics is needed

\square BP245-DIGITAL AUDIO PROJECTS \$5.95. Practical circuits to build and experiment with. Includes A/D converter, input amplifier, digital delay line, compander, echo effect and more.

- BP195-INTRODUCTION TO SATELLITE TV..... $\$ 9.95$. A definitive introduction to the subject written for the professional engineer, electronics enthusiast, or others who want to know more before they buy. $8 \times 10 \mathrm{in}$.
\square BP190-ADVANCED ELECTRONIC SECURITY PROJECTS..... 55.95 . Includes a passive infra-red detector, a fiber-optic loop alarm, computer-based alarms and an unusual form of ultrasonic intruder detector.
\square BP235-POWER SELECTOR GUIDE..... $\mathbf{\$ 1 0 . 0 0}$. Complete guide to semiconductor power devices. More than 1000 power handling devices are included. They are tabulated in alpha-numeric sequency, by technical specs. Includes power diodes. Thyristors, Triacs, Power Transistors and FET's.
\square BP234-TRANSISTOR SELECTOR GUIDE..... $\mathbf{\$ 1 0 . 0 0}$. Companion volume to BP235. Book covers more than 1400 JEDEC. JIS, and brand-specific devices. Also contains listing by case type, and electronic parameters. Includes Darlington transistors, high-voltage devices, high-current devices, high power devices.
\square BP99-MINI-MATRIX BOARD PROJECTS..... $\$ 5.50$. Here are 20 useful circuits that can be buitt on a mini-matrix board that is just 24 holes by ten copper-foil strips.
[] BP117-PRACTICAL ELECTRONIC BUILDING BLOCKS-Book 1.....\$5.75. Oscillators. Timers, Noise Generators, Rectifiers, Comparators, Triggers and more.
D BP184-INTRO TO 68000 ASSEMBLY LANGUAGE..... $\mathbf{\$ 6 . 9 5}$. The 68000 is a great new breed of microprocessor. Programming in assembly language increases the running speed of your programs. Here's what you need to know.

BP179-ELECTRONIC CIRCUITS FOR THE COMPUTER CONTROL OF ROBOTS 57.50 . Data and circuits lor intertacing the computer to the robot's motors and sensors.
 ELECTRONIC TECHNOLOGY TODAY INC.
 P.O. Box 240, Massapequa Park, NY 11762-0240

Name
Address
City
\qquad

State
ate
Zip

- BP239-GETTING THE MOST FROM YOUR MULTIMETER..... \$5.95. Covers basics of analog and digital meters. Methods of component testing includes transistors, thyristors, resistors, capacitors and other active and passive devices.
\square BP97-IC PROJECTS FOR BEGINNERS..... $\$ 5.50$. Power supplies, radio and audio circuits, oscillators, timers, switches, and more. If you can use a soldering iron you can build these devices.
\square BP37-50 PROJECTS USING RELAYS, SCR'S \& TRIACS..... $\$ 5.50$. Build priority indicators, light modulators, warning devices, light dimmers and more.
Q RADIO-100 RADIO HOOKUPS.....s3.00. Reprint of 1924 booklet presents radio circuits of the era including regenerative, neutrodyne, reflex \& more.
\square BP42-SIMPLE LED CIRCUITS..... \$5.50. A large selection of simple applications for this simple electronic component.
\square BP127-HOW TO DESIGN ELECTRONIC PROJECTS..... \$5.75. Helps the reader to put projects together from standard circuit blocks with a minimum of trial and error.
\square BP122-AUDIO AMPLIFIER CONSTRUCTION.....\$5.75. Construction details for preamps and power amplifiers up through a 100 -watt DC-coupled FED amplifier.
\square BP92-CRYSTAL SET CONSTRUCTION..... $\$ 5.50$. Everything you need to know about building crystal radio receivers.
\square BP45-PROJECTS IN OPTOELECTRONICS..... $\mathbf{\$ 5 . 5 0}$. Includes infra-red detectors, transmitters, modulated light transmission and photographic applications. PP185-ELECTRONIC SY. TBP185-ELECTRONIC SYNTHESIZER CONSTA ${ }^{\text {U }}$ UTION $\$ 5.95$. Use this book A learl fow to buld a reasonably low $4 \mathrm{kaj} / \mathrm{foj}$ worthwhile monophonic synthesizer Qbole earn a lot about electronic music synthesis in the process.

CHECK OFF THE BOOKS YOU WANT

interfaces and sticking by a 640 K memory model. Even then, it's never really certain that the program that runs on my PC will run on the PC next door-and getting it to print properly on the system next door is well nigh out of the question.

So, what will become of those 60 million PC's. plus the Macs. Amigas. Ataris, and so on? It's sad, but humanity has been down this road before, and we find that horse carts, though they were once as abundant proportionally, simply aren't permitted on the freeway. Those computers aren't going to make it either, though some, notably the DOS PC, may well hang on for a long while as windows in some POSIX-OS/2-Windows-DOS-Sparc-Mac-PC-Amiga machine of the future. (After all, if it were worth the trouble, it wouldn't be all that hard to simulate an Apple or Commodore 64 of seven years ago on a 486 PC, high-end Mac, or high-end Amigafaster than real time?

And that raises what should be the hottest issue of all, something far more important than ranting and rav-
ing over doomed PC's versus doomed Macs versus doomed Amigas. The issue is our own data, which we must somehow get out of that DOS window and onto that machine of the future-to say nothing of moving it from one application to another or to a supercomputer. We have allowed much of our data, entered laboriously and at tremendous expense, to become embodied in files that are formatted in obtuse, secret, and unstandardized ways.

It is high time that the software manufacturers who practice this are forced to change. They are in effect thieves who have stolen from us what is rightfully our property. It is time to insist that all software that we buy have the capability to disgorge our data in full, including such things as the coordinates of graphical objects, in an open, published-data-interchange format. As a symbolic discouragement to theft and extortion by software manufacturers, and to allow third parties to assist in retrieving the stolen property without fear of litigation, it is time to amend the
copyright law to explicitly permit reverse engineering in any program that stores output but won't provide it in an open format, irrespective of any and all language to the contrary in the licensing "agreement."

We have been down this road before. Compiler suppliers once swore that royalty-free function libraries would end the world. Much the same was said of ANSI-standard C, and of spreadsheet DIF files, and so on. Oddly enough, the world is still here. So to any manufacturer who feels this proposal is unreasonable, I say this: Maybe your problem is that your are making money by holding your customers up for ransom, rather than by providing a good product. If so, the sooner you are out of business, the better-preferably on terms that are as punitive as possible to you, your investors, and your bankers. You are not indispensable, regardless of who you think you are or how big you are. There are hungry hordes waiting in the wings to replace you.
PAUL SCHICK
Madison, WI

HUGE EXPANDING MARKET!
Work from your hoose - part-time or full-time: No prior experience needed - Average mechanical ability only requirement for your uccest Oner 15 million camsorkers in us--Oser 5 million expected to be wold in 1991 , tlone?

It is a bact that the vast mojonity on camcorter maltunations (just like V(Rst) are due to simple mech.mic.al failure-. We can chow vou how to esoily tic thowe breakilonns and eatn an average of $\$ 85.00 \mathrm{Hr}$. while working at home?
Get In Now - Soon cankoeders will be like VCRs, i.e. one in almot mery home.

For,acamcorder cleaning job you cancem 565,00 ion less than 50 minutes work.
For,acamcorder repsiriohyoucancamover 5100.00

Free information package call or write: Toll-Free 1-800-537-0589 Viejo Publications, Inc.
 5329 Fountain Ave., Dept. REC Los Angeles, CA 90029

CIRCLE 188 ON FREE INFORMATION CARD

No other training to troubleshoot computers

Only NRI walks you through the step-by-step assembly of a powerful 386 sx computer system you train with and keep-giving you the handson experience you need to work with, troubleshoot, and service today's most widely used computer systems. Only NRI gives you everything you need to start a money-making career, even a business of your own, in computer service.

No doubt about it: The best way to learn to service computers is to actually build a state-of-the-art computer from the keyboard on up. Only NRI, the leader in career-building at-home electronics training for more than 75 years, gives you that kind of practical, real-world computer servicing experience.

Indeed, no other training-in school, on the job, anywhere-shows you how to troubleshoot and service computers like NRI.

Get inside the West Coast 386sx computer system... and experience all the power and speed of today's computer technology!

DIAGNOSTIC HARDWARE
AND SOFTWARE
R.A.C.E.R. plug-in diagnostic card and QuickTech menudriven software, both from Ultra-X, give you hands-on experience with today's professional diagnostic tools

MONITOR

High-resolution, nonglare, 14 " TTL monochrome monitor with tilt and swivel base

DIGITAL

LOGIC PROBE

simplifies analyzing digital circuit operation
DIGITAL
MULTIMETER
Professional test instrument for
quick and easy measurements

SOFTWARE
 Train with MS-DOS, GW-BASIC, and popular Microsoft Work

 applications softwareDISCOVERY LAB
Complete breadboarding system lets you design and modify circuits, diagnose and repair faults

LESSONS

Clear, illustrated texts build your understanding of computers step by step

With NRI's exclusive hands-on training, you actually build and keep the powerful new West Coast 386sx/20 MHz mini tower computer system.

You start by assembling and testing your computer's 101-key "intelligent" keyboard, move on to test the circuitry of the main logic board, install the power supply and 1.2 meg high-density floppy disk drive, then interface your high-resolution monitor.

What's more, you now go on to install and test a powerful 40 meg IDE hard disk drive-today's most-wanted computer periph-eral-included in your course to

dramatically increase your computer's data storage capacity while giving you lightningquick data access. But that's not all!

Professional diagnostic hardware and software makes troubleshooting fast and accurate

Your NRI training now includes a remarkable diagnostic package that allows you to quickly locate and correct defects in IBM XT, AT 80286/80386, and

shows you how
 and service
 like NRI!

JEW! 40 MEG HARD ISK DRIVE!
ou install this 40 meg IDE ard disk drive internally, for reater data storage capacity nd data access speed

NEW! 386sx/20 MHz MINI TOWER COMPUTER! Features 32-bit 80386sx CPU, 1 meg RAM, 6 fK ROM, 1.2 meg high-density floppy disk drive

NRI gives you the confidence and the know-how to step into a full-time, money-making career as an industry technician, even start a computer service business of your own!

No experience necessary... NRI builds it in

With NRI, you learn at your own pace in your own home. No classroom pressures, no night school, no need to quit your present job until you're ready to make your move. And all throughout your training, you have the full support of your personal NRI instructor and the NRI technical staff, always ready to answer your questions and give you help whenever you need it.

FREE catalog tells more. Send today!

Send today for NRI's big, free catalog that describes every aspect of NRI's innovative computer training, as well as hands-on training in TV/video/audio servicing, telecommunications, industrial electronics, and other high-growth, high-tech career fields.

If the coupon is missing, write to NRI School of Electronics, McGraw-Hill Continuing Education Center, 4401 Connecticut Avenue, NW, Washington, DC 20008.

IBM is a registered trademark of International Business Machines Corp QuickTech and R.A.C.E.R. are registered trademarks of Ultra-X, Inc West Coast is a member of the Syntax Group.
compatible computers.
You'll use your Ultra-X QuickTech diagnostic software to test the system RAM and such peripheral adapters as parallel printer ports, serial communications ports, video adapters, and floppy and hard disk drives. You'll go on to use your R.A.C.E.R. diagnostic card, also from Ultra-X, to identify individual defective RAM chips, locate interfacing problems, and pinpoint defective support chips.

This ingenious diagnostic package is just one more way

ETUIPMBNT REPORIS

McGraw-Hill CD-ROM Science and Technical Reference Set

Everything you ever wanted to know ... on a disc.

CIRCLE 10 ON FREE INFORMATION CARD

What would you say if we told you that you could have easy access to all of the McGraw-Hill Concise Encyclopedia of Science and Technology and the McGraw-Hill Dictionary of Scientific and Technical Terms without having to give up any room on your already crowded bookshelf of reference and data books? Thanks to the CD-ROM format, all of that fits on a disc that looks just like a standard audio CD.

The Concise Encyclopedia, which contains some 7700 articles and 1700 photos and line drawings, is a condensed version of McGraw-Hill's 20 -volume encyclopedia. It has been one of our favorite desk references for the past several years because of its broad coverage of more than 75 major science and engineering disciplines. Unfortunately, the book is a bit unwieldy-it has more than 2000 pages, is $31 / 2$ inches thick, and weighs several pounds. The Dictionary of Scientific and Technical Terms is another impressive reference, with 117.000 terms and definitions.

Unlike a book, you need the right computer equipment to read a CDROM. First, of course, you need a CD-ROM drive with the Microsoft CD-ROM extensions that allow DOS to access it. (The extensions are supplied when you purchase a drive.) You
also need an IBM AT or better PC with 1 megabyte of expanded memory compatible with the LIM (Lotus-Intel-Microsoft) specification, and a minimum of 1 megabyte of free space on your hard disk drive. If you want to view the graphics, you'll need a VGA graphics card and monitor. If you want to output text to a printer, you'll need a LaserJet or compatible. A mouse is supported, but not required.

As long as you have enough space on your hard disk, you'll run into little problem installing the software. A setup program on the CD-ROM copies files onto your hard disk, and modifies your CONFIG.SYS and AUTOEXEC.BAT files.

Using the database

Once the installation is finished, you're ready to jump into the database. The retrieval software, Discover, is your interface to the reference set. There are several ways to get to the information you want: graphic access, alphabetical access. link-phrases/terms, and complete text search.
Graphic access is the way to go if you don't know the precise term or phrase you want to find information on. A color graphic, "Mirror of the Cosmos" appears on the screen, reflecting the major disciplines of the
encyclopedia. You could click on "Engineering." for example, and then be presented with another graphic-this time it's a laboratory bench with notebooks and textbooks scattered around and on shelves, with titles such as "Electrical Power," "Telecommunications," "Physical Electronics," and "Electronic Circuits." When you click on one of those, you're brought to another, non-graphic menu, which allows you to further narrow your choice.
For alphabetic access, you display the table of contents. But since all 7700 articles can't fit on the screen, you have to "expand" it alphabetically to get to the choice you want.
Accessing a "link phrase" is, however, the best way to find information if you know what you're looking for. It's the fastest method, because it works by finding the hypertext links in each article and illustration.
The provision of hypertext capabilities is an important feature of the reference set. The links allow you to jump for one article to another as you pass terms of interest. Any major links are indicated on the screen in color. You can navigate the data in the reference via the "links" that tie the data together. So if you were reading an article on electronic listening devices, you might see links to "Amplifiers" or "Radio Transmitter."
It is also possible to do a word search on the entire database, but that inefficient searching takes an awful long time.
We found the data base to be relatively easy to use, although we would have preferred to have an on-disc tutorial. After all, there's certainly enough room on the disc for a multimegabyte tutorial.
We think that the McGraw-Hill CDROM Science and Technical Reference Set is a very strong product. Before you buy, however, consider that the paper versions are available for a total of just over $\$ 200$. The CDROM, which has much lower production costs, sells for $\$ 495$.

R-E

CABLE TV CONVERTERS AND DESCRAMBLERS SB-3 $\$ 79.00$ TRI-BI $\$ 95.00$ MLD-\$79.00 M35B \$69.00 DRZ-DIC $\$ 149.00$. Special combos available. We ship COD. Quantity discounts. Call for pricing on other products. Dealers wanted. FREE CATALOG. We stand behind our products where others fail. One year warranty. ACE PRODUCTS. P.O. Box 582, Saco, ME 04072 1 (800) 234-0726.
CIRCLE 75 ON FREE INFORMATION CARD

COMPUTER CRACKING, INFORMATION TRACKING, cutting edge audio/video surveillance, electronic trailing, night vision, surveillance photography, intelligence kits, cellular, pager, fax interception, recorders, scrambling and sources. ALL NEW-BOOK II HOW TO GET ANYTHING ON ANY-BODY-Lee Lapin. "Really scary stuff"Charles Jaco, CNN. \$38.50. ISECO, 2228 EI Camino, No. 349-R, San Mateo, CA 94103.

CIRCLE 194 ON FREE INFORMATION CARD

CALL NOW AND RESERVE YOUR SPACE

- $6 \times$ rate $\$ 940.00$ per each insertion.
- Fast reader service cycle.
- Short lead time for the placement of ads.
- We typeset and layout the ad at no additional charge.

Call 516-293-3000 to reserve space. Ask for Arline Fishman. Limited number of pages available. Mail materials to: mini-ADS, RADIO-ELECTRONICS, 500 B Bi-County Blvd., Farmingdale, NY 11735.

APPLIANCE REPAIR HANDBOOKS-13 volumes by service experts; easy-tounderstand diagrams, illustrations. For major appliances (air conditioners, refrigerators, washers, dryers, microwaves, etc.), elec. housewares, personal-care appliances. Basics of solid state, setting up shop, test instruments. $\$ 2.65$ to $\$ 5.90$ each. Free brochure. APPLIANCE SERVICE, PO Box 789, Lombard, IL 60148. 1-(312) 932-9550. CIRCLE 84 ON FREE INFORMATION CARD

FUNCTION GENERATORS WITH INTELLIGENT 100 MHz FREQUENCY COUNTER. Sine, square, triangle, ramp, DC \& Sync. TTL outputs. Seven frequency ranges: 2 Hz to 6 MHz (FG-506), 2 Hz to 13 MHz (FG-513). Intelligent 100 MHz frequency counter with period mode. Continuous, trigger, gate, clock, sweep and external frequency modes. Lin/ Log sweep. Adjustable duty cycle/symmetry. Voltage controlled frequency functions. TCXO with $1 \mathrm{ppm} / \mathrm{yr}$. aging rate (optional). FG-506 \$695.00; FG-513 \$1295.00. Call: 800-664-9838. AMERICAN RELIANCE INC., 9952 E. Baldwin PI., EI Monte, CA. 91731.

CIRCLE 176 ON FREE INFORMATION CARD

5 MINUTE ASSEMBLY! MONEYBACK GUARANTEE! Attach the VT-75 chip to any $3 \mathrm{~V}-12 \mathrm{~V}$ battery and you have the most powerful miniature transmitter you can buy anywhere. Tiny Law Enforcement grade device allows you to hear every sound-even footsteps-over 1 mile away on any FM radio or wideband scanner. $80-130 \mathrm{MHZ}$. 100 mW output! VT-75 microtransmitter complete \$49.95 + \$1.50 S \& H. Visa, MC, MO. COD's add $\$ 4.00$. DECO INDUSTRIES, Box 607, Bedford Hills, NY 10507. 1-800-759-5553.

THE MODEL WTT-20 IS ONLY THE SIZE OF A DIME, yet transmits both sides of a telephone conversation to any FM radio with crystal clarity. Telephone line powered - never needs a battery! Up to $1 / 4$ mile range. Adjustable from $70-130 \mathrm{MHZ}$. Complete kit $\mathbf{\$ 2 9 . 9 5}$ $+\$ 1.50 \mathrm{~S}+\mathrm{H}$. Free Shipping on 2 or more! COD add \$4. Call or send VISA, MC, MO. DECO INDUSTRIES, Box 607, Bedford Hills, NY 10507. (914) 232-3878.
CIRCLE 127 ON FREE INFORMATION CARD

CREATE INTELLIGENT PROJECTS WITH THE VERSATILE Z8 PROGRAMMABLE MICROCOMPUTER. This powerful computer was designed for flexibility and can be used for various electronic projects. VO Intensive. Up to 20 MHz operation. Download programs or run EPROM code. Special hardware features included. Prices from $\$ 125.00$. Batterybacked RAM, X-assembler, and other options available. CALL FOR FREE BROCHURE. MJS DESIGNS, INC., 1438 W. Broadway Rd., Suite B185. Tempe, AZ 85282. (602) 966-8618.

CIRCLE 179 ON FREE INFORMATION CARD

FREE CATALOG! ELECTRONIC TOOLS \& TEST EQUIPMENT-Jensen's new Master Catalog, available free, presents major brand name electronics tools, tool kits, and test instruments, plus unique, hard-to-find products for assembly and repair and custom field service kits available only from Jensen. All fully described and illustrated. Enjoy free technical support and rapid, post-paid delivery anywhere in the Continental USA. JENSEN TOOLS, INC., 7815 S. 46 th St., Phoenix, AZ 85044. Phone: 602-968-6231; FAX 1-800-366-9662.

MULTIFUNCTION COUNTER.

Especially well-suited for the communications industry, B\&K Precision's 1856 multifunction counter can be used to make highly accurate and repeatable measurements of radio transmitter frequency right up to the microwave range. It exceeds the requirements for adjusting transmitter frequency to FCC standards, as required for radio stations or land mobile, radio telephone receivers. Because the 1856 extends to 1.3 GHz , it even covers cellular channels.

The counter has a $5-\mathrm{Hz}$ to $1.3-\mathrm{GHz}$ bandwidth and a TCXO (temperaturecompensated crystal oscillator) timebase with 0.5 ppm stability at $23 \pm 5^{\circ} \mathrm{C}$ and 1-ppm stability from 0 to $50^{\circ} \mathrm{C}$. The model 1856 's functions include frequency, period, period average, and totalize. The periodmeasurement function. used for very low-frequency measurements, makes

CIRCLE 16 ON FREE INFORMATION CARD
it easy to measure tone-encoding functions used in may types of communications systems. In the totalize mode, useful in counting the number of operations performed by production machines or in qualitycontrol tests, pulses from 5 Hz to 10 MHz are counted up to $99,999,999$. Reset and hold can be performed using a switch, or using a remote start/stop input.
The compact model 1856 measures $2.5 \times 9.4 \times 7.5$ inches and weighs 3.3 pounds. It's large, high-intensity, 8 -digit

LED readout provides $\mathrm{kHz} / \mu \mathrm{s}, \mathrm{MHz} / \mathrm{ms}$, gate. and overflow indicators. A detachable power cord, a schematic, parts list, spare fuses, and an instruction manual are included. Optional accessories include an antenna for conveniently checking transmitter frequency and a 10:1/ direct probe.

The model 1856 multifunction counter has a suggested list price of \$495.-
B\&K Precision, 6470 West Cortland Street, Chicago, IL 60635: Phone: 312-889-1448.
aCCELERATION SENSOR. According to Analog Devices, their $A D X L-50$ is the industry's first surface-micromachined acceleration sensor (accelerometer) and the only one to offer complete signal-conditioning and self-test circuitry on-chip. Designed primarily for automotive applications such as collision detection, active suspension, and anti-skid braking systems, the device measures acceleration in a single plane of sensitivity over the $\pm 50 \cdot \mathrm{~g}$ range to an accuracy of 5%. Self-test cir-
cuitry is activated by a digital command and guarantees operation of both the sensor and associated signal conditioning to stated specifications. That

CIRCLE 17 ON FREE
INFORMATION CARD
is a vital feature in applications such as air-bag systems. The ADXL-50 measures only $500 \mu \mathrm{~m} \times$ $625 \mu \mathrm{~m}$, much smaller than other types of micromachined sensors. Unlike other accelerometers that monitor the resistance change of stressed piezoresistors to detect acceleration, the ADXL-50 measures the changes in capacitance, and is therefore insensitive to temperature changes.
The sensor operates in a force/balance mode. Voltage is applied to the sen-
sor, which produces a force exactly opposite to that caused under acceleration. The sensor therefore remains at rest at all times, and the nonlinear mechanical properties of the silicon structure can be effectively ignored. Signal-conditioning circuitry provides excitation signals for the sensor, then amplifies and linearizes the analog output signal to 0.25 to 4.74 volts.

The ADXL-50 accelerometer costs $\$ 23.00$ (100 's) and $\$ 5.00$ in automotive OEM quantities.-
Analog Devices, Literature Center, 70 Shawmut Road, Canton, MA 02021.

DMM ACCESSORIES. A new line of modular test accessories from Fieldpiece is designed to solve such on-site servicing problems as not having the right test lead for the job, alligator clips that pop off of test points, and too-short probe tips. The solution is simple but innovative: All the accessory connectors, including the connection between the probe tip and the probe handle, are standard banana plugs or jacks. A female banana jack, built into the "handle" of the deluxe test lead, fits a sleeved male banana plug. The line includes a variety of probe tips, alligator clips with pigtails, and a current clamp head, all of which plug onto the end of the deluxe test lead. One test lead end can be plugged into another to double the length of the test lead; with the addition of an alligator clip, it's possible to build an 8 -foot

CIRCLE 18 ON FREE INFORMATION CARD
ground lead that is unlikely to come apart. The accessory kit, model ADK10 includes a pair (red and black) of each of the following: 42 -inch test leads, small and large alligator clips, and short ($1 / 2$-inch) and long (3 -inch) probe tips, packed in a plastic box.

The box has room for the model ACH current clamp head, which can be used with Fieldpiece "Stick". style DMM's as well as any multimeter with 1 mVDC resolution (most meters).

The small-head clamp fits into tight spaces and measures current up to 300 amps. Also available is the ALC1 leather case, which holds a DMM and accessories. It has a belt loop on the back and leather loops on the front hold two extra probe tips or the ACH current clamp head. The leather case can accommodate a "Stick," Fluke 70 Series (without the boot), or Beckman 220/150 Series (without the tilt stand) multimeter. It is available with the accessories and current clamp head as model ALCK8.

The ADK10 accessory kit. ACH current clamp head, ALC1 leather case. and ALC8 leather case with accessories and current clamp head cost \$26.95, \$24.95, \$24.95, and $\$ 59.95$, respectively.Fieldpiece Instru-
ments, Inc., 8322 B Ar tesia Blvd., Buena Park. CA 90621: Phone: 714-992-1239; Fax: 714-992-1239.

UV-LIGHT-BLOCKING EPROM LABEL. When used on EPROM packages, a UV-opaque write-on label

Giranciranamantar CIRCLE 19 ON FREE INFORMATION CARD
from DATAK (Cat\# EP-1) gives added assurance that the burned program will not be accidentally erased by stray light from fluorescent lamps or other ultra-violet sources. The label consists of a white polyurethane layer for writing, a black opaque-vinyl layer, and a layer of pressuresensitive adhesive. The flexible film construction conforms to EPROM packages having raised windows. The label can be removed without leaving an adhesive residue on the EPROM package. Sized to fit on top of a 24 -pin wide DIP, the 1.1×0.46-inch label will accommodate three lines of standard type. It can be written on with a typewriter, ball-point pen, soft pencil, or any platten feed computer printer.

Cat\# EP-1, containing

147 UV-opaque EPROM labels on three sheets, costs \$4.00.-DATAK Corporation, 55 Freeport Blvd., \#23, Sparks, NV 89431: Phone: 702-359-7474: Fax: 702-359-7494.

SERIAL LINE MONITOR/ PROTOCOL ANALYZER SOFTWARE. DataScope Version 2.0 transforms a PC into a passive or active RS-232 data and signalline monitor that can eliminate guesswork while dealing with serial transmissions. The upgraded version of Paladin Software's program is still capable of collecting 8 megabytes of data and signal information with microsecond timestamp resolution, but has been enhanced with tiled concurrent window displays and a pull-down menu interface. Up to four unique

CIRCLE 20 ON FREE INFORMATION CARD
and simultaneous displays can be active at the same time, providing passive, interactive, and historic monitoring in any user-selected combination. Display tiles can be combined to create larger windows, and on of four presentation filters (mixed, alternating. COM1, or COM2) can be applied to every window. DataScope can operate at all possible rates up to 115,200 baud, while matching user-specified trigger strings against incoming
data. It offers full archiveparameter control combined with pre-, center-, and post-trigger positioning. Character translation sets can be replaced or altered by the user to modify the translation strings and/ or attributes for each source separately. Version 2.0 runs on all IBM-PCcompatible machines with MS-DOS 2.1 or above, 256 K of available RAM. and at least one serial port.

DataScope Version 2.0, with connector shells, cables, and a comprehensive manual, costs \$249.Paladin Software, Inc. 3945 Kenosha Avenue. San Diego, CA 92117: Phone: 619-490-0368.

CEBUS-NETWORK DE-
VELOPMENT PRODUCTS VELOPMENT PRODUCTS. An integrated circuit, a modem subsystem, and an evaluation system from

Intellon Corporation will enable manufacturers and application developers to implement carrier sense/ multiple access (CSMA) networks over standard $A C$ electrical wiring. The products are based on \ln tellon's patented "Spread Spectrum Carrier" technology, which is being considered by the Electronic Industries Association as the power-line signalling standard for its Consumer Electronics Bus (CEBus). The CEBus power line standard offers more than 100 times the speed of the power line signalling method most widely used today. and will enable communication and control among electrical devices, sensors, and control systems in homes and commercial buildings.

The Spread Spectrum Power Line Modem
(SSPM), built around the SSPM IC, is said by Intellon to be the first integrated circuit to implement the EIA's proposed CEBus power line physical layer standard. The 28 -pin chip operates at the CEBus standard rate of 10,000 " 1 " bits per second. It generates and receives all the required signalling information, handles the CEBus physical layer protocol, and assists the higher-layer protocols. The modem board, which can be attached to a power supply and a host microprocessor that supports CEBus protocols, helps speed application development by freeing engineers from developing and testing the power line network hardware.
The evaluation system allows developers to evaluate CEBus and Spread

CIRCLE 21 ON FREE INFORMATION CARD

Spectrum Carrier technology and to implement a demonstration CEBus CSMA network that communicates over $A C$ power wiring, which can be used to model and analyze network characteristics by creating and running various traffic-loading scenarios. The system includes software that runs on any IBM or compatible PC and three complete CEBus network nodes. It
features an electronic mail system to demonstrate the network and its capabilities.

The evaluation system costs $\$ 3.495$; the SSPM chip and the modem board (pictured) cost less than $\$ 5$ plus a one-time, $\$ 2500 \mathrm{li}$ cense fee in OEM quantities and $\$ 105$ in quantities of ten, respectively.-Intellon Corporation, 5150 West Highway 40. Ocala, FL 32675; Phone: 914-237-7416: Fax: 914-237-7616.

BEZEL SELECTION. Designed for use in the electronics industry as a frame for LCD displays, III's Bezel

CIRCLE 22 ON FREE INFORMATION CARD

Beautiful comes in four popular sizes that fit most LCD small-character displays. Available in colors (red, yellow, and blue) as well as black and white. Bezel Beautiful is molded in UL-listed, machinable, en-gineering-grade plastic. Molded with a slightly concave, outward curve from mounting edge to mounting edge, the bezel automatically adjusts itself to align without any gaps or spaces against any panel. Once mounted, it will remain flat on the face of the product to which it has been bonded for the life of the unit. It can be attached using the heat-seal method, sheet-metal screws, or a glue gun. The bezels come in four sizes, with measurements in inches for the viewing area of $1 \times 2.5 . \quad 0.7 \times 1.8$. 0.7×2.5, and 0.7×3.5.

NO COMPLICATED ELECTRONICS, NO EXPENSIVE INSTRUMENTS: Home study course shows you how
to make good money in VCR repair.

An amazing fact: you can do more than four out of five VCR repairs with ordinary tools and basic fix-it procedures. Our home study program shows you how.

Learn all of the systems, mechanisms, and parts of almost all brands of VCRs. With no expensive instruments. No complicated electronics. No fancy workshop. The step-by-step texts and
 close personal attention from your instructor make learning easy.
 Texts, course materials, and tool kit are sent to your home. Graduate ready to make up to $\$ 50.00$ or more per hour in your own spare-time or full-time business.
Send today for your free career hooklet. Or call 800-223-4542
Name
Address
City \qquad State \qquad Zip

Bezel Beautiful is priced at less than a dollar each in OEM quantities.-International Instrumentation Incorporated (III), Box 3751. Thousand Oaks. CA 91359: Phone: 805-495-7673.

TRI-FIELD METER. The TriField Meter from AlphaLab independently reads AC electric fields, AC magnetic fields, and radio/microwaves with multi-directional sensors that read field strengths in all directions simultaneously. It reads all three types of fields numerically and with a safe/borderline/high scale, weighted proportionally to the fields' effect on the body. Thresholds are based on epidemiological and laboratory studies. Although no absolute hazard thresholds have been established, re-

CIRCLE 23 ON FREE
INFORMATION CARD
duction of relative exposure is advised. The meter comes with batteries, instructions, and a one-year limited warranty. The Tri-Field Meter costs \$100 postpaid.-AlphaLab. 1272 East Alameda Ave., Salt Lake City, UT 84102: Phone: 503-621-9701.

32-SWITCH CONTROL CARD. An eight-bit computer board from AccuSys, dubbed the 32 Switch Reed Relay Card gives any PC the ability to select and control 32 analog or digital signals with ease. Any signal up to 100 volts and 10 watts can be controlled by the computer. Because there is no address limit to the number of boards that can co-reside in a single PC, one computer can control the connection of hundreds of signals by plugging in as many switch cards as there are available slots. The 32 Switch

CIRCLE 24 ON FREE INFORMATION CARD

Card's ability to route multiple analog signals through a single interface eliminates the need for redundant modems. When combined with higher capacity external relays, the card is capable of more active functions. For instance, when combined with an application that senses energies, it can switch off water heaters and household appliances when they aren't needed and automatically close ventilation systems or call the police or fire department when sensing a fire or break-in.
The 32 Switch Reed Relay Card, including software interface examples with source code in Assembler, BASIC, C. Fortran, Cobol, and dBASE, costs \$395.-AccuSys, Inc., 3695 Kings Row, Reno, NV 89503: Phone 702-746-1111.

The World's Most Popular Probe

More SP100 Probes Have Been Sold Worldwide Than Any Other Probe Ever Made

- Universal For Tektronix. Hewlett Packard, Philips, Leader, B\&K, Kikusui, Hitachi, Beckman and other oscilloscopes
- Economical

Substantial savings compared to OEM probes

- 10 day return policy Guaranteed performance and quality

Try the

Elaititunits.

bulletin board system (RE-BBS) 516-293-2283

The more you use it the more useful it becomes.

We support 1200 and 2400 baud operation.

Parameters: 8N1 (8 data bits, no parity, 1 stop bit) or 7E1 (7 data bits, even parity, 1 stop bit).

Add yourself to our user files to increase your access.

Communicate with other R-E readers.

Leave your comments on R-E with the SYSOP.

RE-BBS
516-293-2283

GET THE LATEST ADVANCES IN ELECTRONICS

Elecitnoics.

Radio-Electronics gives you exciting articles like:

ISDN: The Telephone Network of Tomorrow The Facts on FAX
\square A Digital Phone Lock
How To Design Switching Circuits
EIA-232 A real standard for serial interfacing?
\square Build a synergy card for your PC
」 '386 Power at a '286 price
Build a biofeedback monitor
More on Multiplexing

FOR FASTER SERVICE CALL TODAY

DON'T DELAY SUBSCRIBE TODAY!

HOW TO SERVICE YOUR OWN TUBE AMP; by Tom Mitchell. Media Concepts, P.O. Box 1408, Norwalk, CT 90651-1408; 213-594-4717; \$69.95.
This "how-to" course is a complete multi-media package that consists of a 247-page guidebook and a 68 -minute videotape. stored in a plastic binder. Designed to save musicians money, the program instructs guitarists on the care, service, and modification of their tube-based guitar amplifiers. The author claims that, by following the instructions in the course, users can diagnose and repair more than 95% of all tube amplifier breakdowns and problems.

useful reference information. Several do-it-yourself amplifier modifications are also described.
hMC FULL LINE CATALOG; from Hub Material Company, 33 Springfield Avenue, Canton, MA 02021; Phone: 617-821-1870; Fax: 617-821-4133; free.
Containing a broad selection of products for electronics professionals and hobbyists, this 142 -page catalog features a full index, a table of contents. and color-coded pages to help readers find specific items. The fully-illustrated guide to electronic tools. test equipment, and supplies for the manufacture, assembly, and repair of electronics contains a variety of brand-name, competitively priced products.

CIRCLE 25 ON FREE INFORMATION CARD

Included are test instruments (DMM's, oscilloscopes, and datacommunications and telecommunications test sets), tool kits and precision hand tools, soldering and desoIdering systems and supplies (fluxes, solder, tips. wick, and sponges), lamps and magnifiers, and antistatic devices (bags, wrist straps, mats, runners, meters, and ionizers. Prod-
uct descriptions are accompanied by photographs and prices, as well as "Tech Tips" and comparison tables to make selection easier.

holiday 1991 HOME AUTO-

 MATION BY HEATH; from Heath Company, Dept. 350-058, Benton Harbor, MI 49022; Phone: 1-800-44HEATH; free.Consumer products designed for safety, security. convenience, entertainment, and energy management are featured in this 40 -page, full-color catalog.

CIRCLE 26 ON FREE INFORMATION CARD

Aimed at do-it-yourselfers and electronics hobbyists, the catalog introduces several new products, including an electronic drape controller that allows drapes to be controlled by a handheld remote or be programmed to open or close at set times throughout the day, three air cleaners that electronically deep-clean the air, a gas detector that sounds a loud alarm in the event of a poisonous or explosive gas leak, and a wireless add-on light switch for installation in staircases or long hallways that need a light switch at each end. Also featured in the catalog are wholehouse automation and se-
curity systems, motionsensing indoor and outdoor lighting controls, security cameras, wireless video broadcasters, and energy-saving thermostats. The catalog provides technical information on the products. and explains how the products work. Such topics as pas-sive-infrared technology, X-10 technology, and how time is measured are also discussed.

AUDIO FLYER; from Parts Express, 340 East First St., Dayton, OH 45402-1257; Phone: 513-222-0173; Fax: 513-222-4644; free.

Audiophiles and electronics enthusiasts alike will appreciate the selection of goods offered in this 44 -page, full-color catalog.

CIRCLE 27 ON FREE INFORMATION CARD

The catalog is filled with audio sound components and accessories; cables and wires; audio accessories; cables, speaker enclosures, woofers, midranges, tweeters, and full speaker systems; P.A. equipment: and crossovers. Highlights of this issue include decorative wall plates and accessories for in-wall installed audio systems; 12-gauge neon wire: in-wall speakers; several woofers; and an iso-tip butane soldering iron. R-E

A Shocking Offer!

Now for the first time in CIE's 56 year history you do not have to be enrolled at CIE to receive our Electronics and Electricity Lesson Modules. Available for a limited time to non-students for the shockingly low introductory price of only $\$ 99.50$.

With CIE's patented AUTOPROGRAMMED method of learning you'll quickly learn and then master the basics of electronics and electricity and then move on to ... soldering techniques, applications of Kirchhoff's law, voltage and power, printed circuit boards ... and much, much, more.

Your commitment to CIE ends with your payment, but CIE's commitment to your success just begins when you receive your lessons, exams, binder and equipment. This special price includes the benefits CIE normally extends to its students and graduates.

You'll receive CIE Bookstore privileges, a patented learning method, access to CIE's student, faculty and alumni electronic bulletin board and a free issue of CIE's school newspaper "The Electron". 24-Hour grading and unlimited access to CIE's faculty is available on an optional basis.

And best of all, when you decide to continue your electronics education in any of CIE's programs, you'll receive a $\$ 100.00$ CIE tuition credit certificate.

All this knowledge and support will put you on the road to understanding digital electronics, microprocessing principles, computer systems, telecommunications, and much, much, more.

- Free Issue of "The Electron"
- Build your personal burglar alarm
- Theory and hands-on training lessons and exams covering "current and voltage" through "printed circuit boards"
- CIE Bookstore privileges
- Patent learning method
- Electronic Bulletin Board privileges

All This For Only!

Yes, send me CIE's Introductory Electronic and Electricity Lessons and Equipment.

A7301

Name: \qquad
Street: \qquad Apt. \#: \qquad
City: \qquad
State:
Zip: \qquad
Age: \qquad Phone ()

Total Merchandise: \qquad $\$ 99.50$
Ohio Residents add 7\% Sales Tax:
California Residents add $61 / 2 \%$ Sales Tax:
Total this order: \qquad
Shipping and Handling Charges:

$\$ 5.00$

Method of Payment: Amount Enclosed: S
I Personal Check or Money Order
\neg Master Card 7 Visa

Card Expiration Date:
Signature:

CHARGE BY PHONE!
 VISA
9 AM to 4:30 PM Eastern Time;
1-800-321-2155 ext. 7301; In Ohio 1-800-523-9109 ext. 7301
THEPARTSPLACE

NEW! Now You're Talking! This book will help you earn your first Amateur Radio license and get on the air. It includes all the questions on the new codeless Technician class exam and the Novice written exam. The book also provides helpful tips on equipment and antennas. Illustrated. Over 300 pages. \#62-2414 . . 16.95

Special-Order Hotline. Your local Radio Shack stocks over 1000 popular electronic components. Plus, we can specialorder over 10,000 items from our main warehouse-ICs, semiconductors, tubes, crystals, even SAMS ${ }^{3}$ manuals. No postage charges or minimum requirements for this service. Come in for details!

NEW! PC/XT Experimenter's Circuit Card. This premiumquality prototyping board fits a computer's XT expansion bus connector. Features durable epoxy glass construction and plated-through holes on standard $0.100^{\prime \prime}$ centers. Accepts D-sub connector shown at right. $3^{7 / 9} \times 10^{1 / 16 \times 1 / 16 " .}$ \#276-1598
29.95

(1) NEWI Right-Angle DSub 25 Female Connector. Ideal for use with PC/XT circuit card at left. \#276-1504, 2.49 (2) Box/Board Combination. Molded box and $2 \times 3^{1 / a^{\prime \prime}}$ circuit board. \#270-291 . . 4.99
(3) $2^{\prime \prime}$ Slim Alligator Clips. \#270-346 ... Pkg. of 8/2.19
(4) Cordless Phone Handset Antenna. \#270-1411 2.99

Mercury Bulb Switch. Just the thing for motion detectors, alarms, experiments and school science projects. Rated 2 amps at 12 VDC . Compact T$11 / 2$ size envelope. \#275-040 \qquad 1.29

(1) Two-Tone Piezo Buzzer. Extra-loud. Operates from 8 to 16VDC. \#273-070 10.95
(2) Electromechanical Buzzer. Loud 12VDC buzzer in a sturdy metal case is great for alarms. \#273-051 \qquad 2.49

(1) Stackable Banana Plugs. Jack permits "chain" hookups. \#274-734, Set of $2 / 1.59$
(2) Nylon Binding Posts.
\#274-662 Set of 2/1.59
(3) Micro-Clip Jumpers. $20^{\prime \prime}$
long. \#278-017
Pair/3.49

$5 \sqrt{4-2}$

Super-Bright Strobe Tube. Perfect for photo replacement, hobby projects and experiments. Trigger: 4 kV . Anode: 200 V min. Bulb is about $11 / 2^{\prime \prime}$ long and has $13 / 4^{\prime \prime}$ leads. \#272-1145
3.29

(1) Hi -Precision Thermistor. Resistance changes in proportion to temperature.
\#271-110
. 1.99
(2) 500-Piece Resistor Set. $1 / 4$-watt, 5% tolerance. Includes 54 popular values.
\#271-312 Set 7.95

Car Electrical System Tester. Spot problems before you're stranded! Plug this analyzer into your vehicle's lighter socket. Color-coded LEDs pinpoint problems in your battery, alternator and regulator. \#22-1635
5.95

Since 1921 Radio Shack has been the place to obtain up-to-date electronic parts as well as quality tools, test equipment and accessories at low prices. Our nearly 7000 locations are ready to serve you-NOBODY COMPARES

How American Cablevision's "bullet" zapped signal pirates.

KEN FOLEY

ON WEDNESDAY. MARCH 13. 1991. American Cablevision of Queens fired their first infamous electronic "bullet." According to American Cablevision, they fired a direct hit. Within minutes their switchboard was overloaded with calls from subscribers whose television sets had gone black. American Cablevision was ela-ted-the victims had unsuspectedly taken the bait.

The next morning, American Cablevision sent armies of technicians to service the homes of the complaining customers. They replaced the cable converter
boxes, and took the dead boxes back to the electronic coroner's laboratory, performing hundreds of autopsies. According to official American Cablevision records of the mass epidemic, the "Certificates of Death" were identicalillegal chip "zaps".

On Wednesday April 24, 1991, American Cablevision filed a civil suit in New York City federal court against three hundred and seventeen alleged cable pirates. That was the first time such a large number of cable crooks had been arraigned together. American Cablevision offered the de-
fendants a deal: Pay five hundred dollars within twenty days, or face prosecution and fines from one thousand, to one hundred and ten thousand dollars.
"I think this is something that everybody's going to have to start doing," said American Cable President Barry Rosenblum. American Cablevision has approximately three hundred and thirty thousand paid subscribers in Queens and Brooklyn, and estimates it forfeits hundreds of thousands of dollars each year to video marauders, and plans to fire more bullets. The electronic
bullet is the brainchild of Jerrold Communications of Hatboro, Pennsylvania. It was first fired in 1990, by Greater Media Cable of Philadelphia.

In three separate assaults. Greater Media Cable blasted away, netting three hundred and sixty eight illegal converters, which garnered a bounty close to twenty thousand dollars.
We spoke to Jim Bathold, spokesman for Jerrold Communications, to confirm American Cablevision's story that the electronic bullet is a signal fired from a cable company's headquarters directly into a customer's cable converter. If the box is legitimate, the customer never knows he was just zapped. But if blackmarket chips were installed in a basic converter to circumvent paying the monthly service charge, the bullet uses the chips' own programs to neutralize the decoder and halt the cable service immediately.

Mr. Bathold then elaborated "Yes, that is basically how the bullet works," he confirmed. "But it would not be in our best interest to elaborate, or explain the operational procedure in detail. Otherwise it tells subscribers, 'Here we come.' We have not put one word out there in writing of how it works-no press packages or news releases. We especially wouldn't go into detail with electronic hobbyists," he choked out laughing.

Hoping to fare better in Jerrold's engineering division, we were fortunate to reach an engineer that was also a reader of Ra-dio-Electronics. His boss' boss, technical engineering supervisor, Stan Dori, said: One of the approaches pirates have been taking for years to defeat scrambling is to physically use a decoder box to unscramble the scrambling method. That is, to reverse engineer the legitimate descrambler's software.

The bullet came into being because one of Jerrold's customers (a cable company) told them of rumors that pirates were defeating Jerrold's scrambling technology. And the cable company wanted to aggressively pursue them. So Jerrold acquired a
through various methodologies, and reverse engineered them so that a counter measure could be developed. That counter measure was the bullet, an offensive signal that Jerrold can send down the data stream to neutralize what the pirates reverse engineered. That's the bullet-dou-ble-reverse engineering.

Dori continued, "So by understanding what the pirates are doing and not doing to defeat current technology, we're able to launch a counter-offensive signal, the bullet, to defeat them."

In the hopes of discouraging customers from buying illegitimate descramblers, information regarding the bullet is being leaked from the cable industry, which claims they are losing up to three billion annually from piracy.

According to Jodi Hooper of the National Cable Television Association. "People think cheating on cable services is like a school prank. They don't really think they are committing a crime and stealing. They just don't take it seriously." Hooper also indicated that some cable companies are offering complete amnesty to people who come forward before their systems are audited and the bullet is released. She says if the culprits wait until they are discovered, they will chance the possibility of criminal prosecution and heavy fines.

Richard Aurelio, president of Time Warner's New York City Cable Group, compares cable piracy to shoplifting. "Now that we have the technology, we're going to use it to rope them in." But it's a migraine for the cable industry. Most of the cable companies began scrambling their satellites in 1986, and are now concentrating on detecting people with decoders and illegal hookups.

The National Cable Television Association says about eight million homes nationwide are linked illegally to basic cable signals. And an additional three million homes illegally tap into pay services such as Cinemax and HBO.

But from 1975 through last year, the number of basic service subscribers nationwide grew from nine million to fifty-five million. The U.S. Telephone Association reports that the average
basic cable rate nationwide jumped sixty-eight percent between 1986 and 1989.

So even though the cable companies are reporting that losses from theft have tripled during the same period, cable industry revenue has jumped about seventy percent from over ten billion in 1986 to almost eighteen billion last year.

Such large revenues have caused some consumer groups to become skeptical of the cable companies claims of being financially wounded by theft. "There is no justification for using speculative high-theft figures to justify outrageous rate increases," says Ken McEldowney, head of San Francisco-based Consumer Action.

Another method the cable companies are using to detect pirates, is the "closed circuit radar gun," or time-domain reflectometer. The major drawback with the reflectometer is that it has to be physically attached to the cable entering each home to detect unauthorized connections or decoders. Other than that, sleuthing is still done primarily by inspectors who spend their days eyeballing exterior cables for tampering.

So naturally if the cable industry succeeds in scaring thousands into confessing, it will score a two-headed victory. First by recovering millions in lost revenue having people sign up-as was the case for Utah's TCI Cablevision in 1989 where they ran a blitz advertising campaign showing guilt-ridden signal pirates imprisoned-and second by having the option of keeping the bullet in reserve as a secret weapon and not necessarily having to pay the hefty zapper fee to Jerrold Communications.

Now Time Warner, the second largest cable company with over six million subscribers in thirty six states, is threatening to start firing bullets nationwide. Are they bluffing?

If they are not bluffing, they will undoubtedly catch more cable thieves who are foolish enough to run to their cable company to complain that their pirated cable box is not working properly.

R-E

Build this sweep/function generator and frequency counter and add to your bench-top instrument collection.

MICHAEL A. LASHANSKY

IF YOU'RE AN ELECTRONIC PROFESsional or advanced hobbyist. you know the value of a well-equipped workbench. An important piece of basic equipment is a function generator and frequency counter. Although few professionals are missing one from their bench, many hobbyists can't justify the expense of quality commercial units. If you're one of those who has put off buying such an instrument, we can show you how to build one that produces up to a $2.5-\mathrm{MHz}$ square, triangle, or sine-wave output with a 1 to 20 volt peak-to-peak amplitude and a $20-\mathrm{dB}$ attenuator. This instrument also has a TTL or CMOS 0.5 - to 15 -volt peak output as well as a sweep generator and frequency counter that can read up to 150 MHz . All of these features are combined in a single benchtop unit, for a price of $\$ 300$.

Overview

Our function generator and counter produces a square, triangle, or sine-wave output with a continuously variable amplitude of one volt to 20 volts peak-topeak. A $20-\mathrm{dB}$ attenuator allows smaller amplitude signals to be generated. A variable 0.5 to 15 volt peak TTL or CMOS pulse out-
put is also available. You can vary the DC-level content, duty cycle, or invert any of those signals.

The output frequency covers seven decades, ranging from 0.1 Hz up to 2.5 MHz . (A higher frequency limit can be attained by making some potentiometer adjustments, but at the expense of a degraded amplitude and waveform shape, which we will discuss in our next article.) Fine adjusting is achieved through a linear dial. A six-digit LED indicates the output frequency of the generator, or it can be used to display the frequencies of external signals.

Using the sweep generator, any of the output waveforms can be swept linearly or logarithmically by selecting the sweep width and/ or speed with the front panel controls. You can also sweep the selected waveform under the control of an external voltage, which is useful for frequency modulation generation techniques.

The frequency-counter section can either give a readout of the frequency being generated or it can measure external signals. The counter's range is from DC to 150 MHz with an input sensitivity of 20 millivolts. Input signals can be DC or AC coupled and
the input impedance is switchable between 50 ohms and 1 megohm. A prescale/non-prescale function is provided to make maximum use of the sixdigit LED to display high-frequency counts. The gate time of the counter is controlled by the frequency decade switches and offers gate times of $10,1,0.1$, and 0.01 seconds.

Theory of operation

All low- to mid-end function generators-including this one-use a similar technique for generating a waveform. A basic triangle wave is first generated, then massaged into a sine wave and a square wave. The block diagram of Fig. 1 shows the basic workings of the main board. A frequency-controlled multivibrator drives two current switches, which alternately charge and discharge a capacitor through a resistor. The resulting triangle wave is fed either through a sine-shaper circuit, a square-wave amplifier, or
straight out to the output amplifier section.

The output of the square-wave amplifier controls the polarity of the charging voltage of the capacitor. The capacitor will charge to positive, then to negative and back again to positive, thereby creating a triangle wave with an amplitude of 2 volts peak-topeak. The waveform frequency is controlled by the RC time constant and the amount of negative voltage applied to the multivibrator. We will explore that in more detail later.

The output of the square-wave amplifier is also used to drive a TTL gate and CMOS level-shifter gate combination, which allows both TTL- and CMOS-level pulse outputs.

The sweep-generator section is made up of a voltage controlled multivibrator with a long time constant. That produces a DC voltage that varies according to the voltage applied. The output can be routed to a logarithmic amplifier to create both linear
and log outputs. The signal is then fed to a buffer/level control amplifier which is then coupled to the voltage-control input of the function generator's main multivibrator.

The frequency-counter section is made up of an input-amplifier signal-conditioning circuit, a di-vide-by-100 prescaler, an Intersil 7216B frequency-counter chip. and a six-digit LED. Signals are routed through the front panel for measuring. Prescaling decreases the resolution of the display but allows 150 MHz to be displayed with six digits. The decimal point on the LED indicates that the display is read in kHz .

Triangle-wave generation

Figure 2 shows the schematic of the current switch and the tri-angle/square-wave generator. The combination of IC1-IC4 and Q1-G4 makes up the main volt-age-controlled multivibrator. A negative voltage is applied to the inverting input of IC1, which

FIG. 1-BLOCK DIAGRAM OF THE FUNCTION GENERATOR. Note how the square-wave output is continuously fed back into the current-switch input. That is done to precisely align the triangle and square wave output through the hysteresis loop to prevent crossover distortion.

FIG. 2-CURRENT SWITCH, TRIANGLE/SQUARE-WAVE GENERATOR schematic. The
triangle waveform is generated by alternately switching current sources Q3 and Q4, thereby charging and discharging C103-C107. As the triangle wave crosses the upper and lower levels of IC3's input, a square wave is generated at the output of hysteresis comparator IC6.
drives the base of $\mathrm{Q1}$. Components ICl and Q 1 form a current sink and IC3 and Q3 form a cur-rent-controlled switch. The amount of current flowing through Q1 determines the switching threshold of IC3. As the input of IC1 (pin 2) becomes more negative, the output at pin 6 becomes more positive causing Q1 to conduct more current.

The collector current through Q1 generates a voltage at IC3. pin 3. That voltage causes IC3's output to switch from one state to another. The inverting input of IC3 is connected to the positive rail through the switch-selected timing resistors R115 through R119.

Transistor Q3 switches be-
tween on and off based on the amount of current flowing through the timing resistor selected and Q1. Components IC2. Q2, IC4, and 34 perform the same function but are 180 degrees out of phase.

A triangle waveform is generated by charging and discharging the selected capacitor (C103-C107) by alternately switching current sources Q3 and $\mathrm{Q4}$. The time required to charge and discharge the capacitor determines the period of one cycle and the frequency. Course frequency adjustment is set by the chosen resistor-capacitor combination, and fine frequency control is determined by the voltage at IC1, pin 2.

The triangle waveform is buffered by Q5 and transistors IC6-c and -d. IC6-a, $-b$, and -e acts as a balanced differential amplifier to form a hysteresis comparator which acts as a two-state latch controlling the direction of charging. As the triangle waveform alternately crosses the upper and lower levels of the input (IC3, pin 2 and IC4, pin 2), a square wave is generated at the output of the hysteresis comparator. That square wave is fed back to Q3 and Q4 to control the charging current path through bridge D101-D108.

The square wave is fed back into the triangle wave input for alignment with the triangle wave. The importance of the hys-

PARTS LIST

All resistors are $1 / 4$-watt, 5% unless otherwise indicated.
R101-2700 ohms, 1%
R102, R104, R105, R109, R111100,000 ohms, 1%
R106- 33,200 ohms, 1%
R107, R108, R110-1000 ohms, 1\%
R112, R114- 3010 ohms, 1%
R113- 49,900 ohms, 1%
R115, R120-4990 ohms, 1\%
R116, R121- 7150 ohms, 1%
R117, R122-348 ohms, 1\%
R118, R123- 75,000 ohms, 1%
R119, R124-750,000 ohms, 1\%
R125, R126, R826, R827- 10,000 ohms, potentiometer
R127, R128- 5000 ohms, potentiometer (part of S101 and S102,
respectively)
R129, R825-20,000 ohms, potentiometer
R201, R210, R220-10,000 ohms
R202, R222-470 ohms
R203- 390 ohms
R204, R206, R219-1000 ohms
R205, R216, R217-2700 ohms, 1\%
R207, R208-4020 ohms, 1\%
R209- 511 ohms
R211- 30,000 ohms
R212-2000 ohms
R213, R214-13,000 ohms
R215- 910 ohms, 1%
R218-7500 ohms
R221- 47 ohms
R223, R828-5000 ohms, potentiometer
R224, R225, R228, R229-2000 ohms, potentiometer
R226- 10,000 ohms, potentiometer (part of S201)
R227-4700 ohms, potentiometer

R301-49,900 ohms, 1%
R302, R303- 11,300 ohms, 1%
R304, R306- 12,100 ohms, 1%
R305-309 ohms, 1%
R307-200 ohms, 1%
R308, R309-24,900 ohms, 1\%
R310-127 ohms, 1\%
R311- 63.4 ohms, 1%
R312, R313, R320-1000 ohms
R314-5100 ohms
R315-680 ohms
R316- 150 ohms
R317-6800 ohms
R318, R319-10,500 ohms, 1\%
R321-2000 ohms
R322-12 ohms
R323, R324-1000 ohms, potentiometer
R325-5000 ohms, potentiometer (part of S301)
R401, R402, R503, R504- 10,000 ohms
R403, R404-22,000 ohms
R405-170 ohms, 1%
R406- 12,000 ohms
R407-1200 ohms
R408-2000
R409-18,200 ohms 1%
R410-270 ohms, 1\%
R411-100 ohms, 1%
R412, R414, R502-3000 ohms
R413-24,300 ohms, 1%
R415, R418-47 ohms, 1W
R416, R417-7.5 ohms
R419- 50 ohms, $1 / 2 \mathrm{~W}$
R420-499 ohms, $1 / 2 \mathrm{~W}$
R421-56.2 ohms, 1%
R422, R424- 10,000 ohms, potentiometer (R424 is part of S401)
R423-200 ohms, potentiometer
R501-100,000
R505-10 megohms
R701-10,000 ohms

R702-100,000 ohms
R703-1 megohm
R704- 50 ohms
R705, R718-150 ohms
R706, R712-220 ohms
R707-470 ohms
R708, R715- 51 ohms
R709-R711, R713, R714, R716, R717- 510 ohms
R719- $\mathbf{3 6}$ ohms
R720-1000 ohms
R801-7500 ohms, 1%
R802-33,000 ohms, 1%
R803- 33 ohms, 1%
R804, R805, R807-5100 ohms, 1\%
R806, R810, R816, R817, R819, R820, R822-10,000 ohms, 1\%
R808-510,000 ohms, 1%
R809-2200 ohms, 1\%
R811-22,000 ohms, 1\%
R812-2400 ohms, 1%
R813-100 ohms, 1%
R815- 150,000 ohms, 1%
R818-15,500 ohms, 1%
R821-2000 ohms, 1\%
R823- 15,000 ohms, 1%
R824-18,000 ohms, 1%
R830, R831-5000 ohms, potentiometer (part of S801 and S802,
respectively)
Capacitors
C101, C102, C204, C205-0.1 $\mu \mathrm{f}$ ceramic
C103, C203-100 pF, ceramic
C104- $0.001 \mu \mathrm{~F}$, Mylar
C105- $0.01 \mu \mathrm{~F}$, Mylar
C106- $0.1 \mu \mathrm{~F}$, Mylar
C107-1 $\mu \mathrm{F}$, Mylar
C108, C504-15-60 pF, variable
capacitor
C201-68 pF, ceramic
C202- $0.047 \mu \mathrm{~F}$, ceramic
C301, C303- $0.1 \mu \mathrm{~F}$, ceramic
teresis loop (IC6 pin 4) is to ensure that the triangle and square wave are perfectly timed to avoid any crossover distortion.

The collector of 97 is clipped to approximately 3 volts by D218-D226 and fed to IC7, pins 1 and 9. IC7 is a dual four-input and gate, which logically and's the input square wave with a logic high to produce a TTL-level square wave output. The outputs of the two gates are tied together for increased current drive, and fed to the pulse-output control circuitry. The TTL square wave is level shifted by 88 to 15 -volt CMOS levels, were it is nanded with 15 volts in IC8-a. The output of the gate is fed in parallel to IC8-$b,-c$, and $-d$, where they are also
nanded with 15 volts.
The outputs of IC8-b, $-c$, and -d are connected in parallel for greater drive capability and routed through S201, a 10 K potentiometer with a SPDT switch, which controls the pulse output mode. With the potentiometer in the off position, a TTL-level output is available. Turning the potentiometer throws the switch, which routes the CMOS output to the BNC connector Jl . The 10 K potentiometer controls the amount of signal available to Jl and will vary the amplitude of the signal from 0.5 volts to 15 volts.

Figure 3 shows the schematic of the sine shaper and output amplifier. Sine-wave generation is accomplished by taking the tri-
angle wave from IC6- d and feeding it through the nonlinear network made up of D301-D312 and resistors R301-R310. The circuit attenuates the input triangle wave according to its level, producing a sine-wave equivalent. The output of the sine shaper is fed through a highpass filter to the input of IC9, a CA3030 op-amp. Zener diodes D313 and D314 drop the 15 -volt supply voltage to ± 11.3 volts to accommodate the ± 12-volt requirements of the IC. The gain of IC9 is about 10, and can be adjusted by potentiometer R323. The CA3030 is an inexpensive wide-band op-amp but requires some frequency compensation to work over its entire bandwidth.

C302, C304, C502-39 pF, ceramic
C305, C401- 4.7 pF , ceramic
C307-15 pF, ceramic
C308, C408-5-35 pF, variable
capacitor
C402- 120 pF, ceramic
C403-2.2 pF, ceramic
C404, C406- $6.8 \mu \mathrm{~F}$, tantalum, 20 volts
C405, C407- $0.047 \mu \mathrm{~F}$, ceramic
C501- 33 pF , ceramic
C503-10 pF, ceramic
C601, C602- $1000 \mu \mathrm{~F}$, electrolytic, 50 volts
C603, C604- $100 \mu \mathrm{~F}$, electrolytic, 50 volts
C605- $1 \mu \mathrm{~F}$, tantalum, 20 volts
C701, C704-C706-0.1 $\mu \mathrm{F}$, ceramic
C702, C707-100 pF, ceramic
C703 10u tantalum 16 voits C801-22 $\mu \mathrm{F}$, tantalum, 16 volts
C802, C803-220 pF, ceramic
C804, C805-100 pF, ceramic
C806- 500 pF, ceramic

Semiconductors

D101-D108, D201-D204, D206-D226, D301-D312, D315-D318, D401, D402, D701, D702, D801-1N4148 diode
D205-1N751, 5.1-volt Zener diode
D313, D314-1N746, 3.3-volt Zener diode
BR1-W02M bridge diode
Q1, Q4, Q12, Q13, Q21-2SC1815 or MPSA05 NPN transistor
Q2, Q3, Q6, Q7, Q11, Q19, Q202SA1015 or 2N4403 PNP transistor Q5, Q17-2N4416, N-channel FET
Q8-2N3904, NPN transistor
Q9, Q10, Q14-2SC1923 or MPSH34, NPN transistor
Q15-2N2219, NPN transistor
Q16-2N2905, PNP transistor

Q18-PN5139, PNP transistor
IC1, IC2-LM741, op-amp
IC3, IC4-LM308, op-amp
IC5, IC6, IC20-CA3086, NPN fivetransistor IC (Harris)
IC7-7420, dual 4-input and gate
IC8-4011, quad NaND gate
IC9-CA3030, op-amp
IC10-4066, CMOS quad bilateral switch
IC11-7216B, frequency counter and LED driver (Intersil)
IC12-7815, +15 -volt voltage
regulator
IC13-7805, +5 -volt voltage
regulator
IC14-7915, -15 -volt voltage
regulator
IC15-MC10116, ECL triple-line receiver with Schmitt trigger (Motorola)
IC16-SP8629, prescaler (Plessy)
IC17-LM324, quad op-amp
IC18-MC1458, dual op-amp
IC19-CA3140, op-amp (Harris)
SR801-1000 ohms, thermistor
DISP1-DISP6-common-cathode LED (FND357)
Other components
S1-S7-4PDT-D switch
S8-DPDT switch
S9-S11-DPDT-D switch
S12-S14-DPDT-I switch
S15-DPDT on/off switch
S101-DTDP switch used with R127 (5 K potentiometer)
S102-DTDP switch used with R128 (5K potentiometer)
S201-SPDT switch used with R226 (10K potentiometer)
S301-DPDT switch used with R325 (5 K potentiometer)
S401-SPDT switch used with R424
(10K potentiometer)
S801-DPDT switch used with R830 (5 K potentiometer)
S802-DPDT switch used with R831 (5 K potentiometer)
J1- J4-BNC panel mount connector
J5, J14-8-position female/male, 0.1inch centers
J6-5-position female/male, 0.1 -inch centers
J7, J12-2-position female/male, 0.1inch centers
J8, J13-6-position female/male. 0.1inch centers
J9- $111, \mathrm{~J} 15, \mathrm{~J} 16-4$-position female/ male, 0.1 -inch centers
XTAL1- $10-\mathrm{MHz}$ AT/CUT crystal
T1- $115 / 40$ volts AC, $0.5-\mathrm{amp}$
transformer
F1- 0.5 -amp fuse
Miscellaneous: Case (CTP-1 by Global Specialties), three 1.75 -inch standoffs, two TO-5 heatsinks, three T0-220 heatsinks, three PC boards, internal wiring, fuseholder, 3 -conductor 18 -gauge power-supply cord and strain relief.
Note: The following items are available from Tristat Electronics, Inc., 66A Brockington Cres., Nepean, Ontario, Canada, K2G 5L1, (613) 228-7223:

- A set of three etched, drilled and plated-through PC boards$\$ 76$.
- All components without the PC board and case- $\$ 250$.
- Complete kit of all parts (unfinished front panel)- $\$ 300$.
- Cut and silk-screened front panel- $\$ 10$.
Add \$17 for shipping and handling. Send check or M.O.

FIG. 3-SINE SHAPER AND OUTPUT AMPLIFIER schematic. The triangle wave from IC6-d is fed to a nonlinear network made up of D301-D312 and R301-R310. The triangle wave is attenuated according to its level, producing a sine-wave equivalent.

The main output amplifier consists of Q9 and Q10 configured as an unbalanced differential pair and transistors Q11-Q16 configured as a complementary symmetry push-pull amplifier. A differential amplifier amplifies the difference between the signals present at the base of each transistor. The input signal is fed into the base of g9 and the output of the push-pull amplifier is fed back through the attenuating circuit of R409, C403, and C408 and coupled to the base of Q10. The output of the differential pair, 89 and Q10, is taken from the collector of Q10 with the gain of that signal controlled by R408 and R423, which shunts the input signal to ground.

The DC content of the output signal is determined by the DC bias voltage at the base of Q10 (that value is set by potentiometer R422 and should be adjusted to give a 0 -volt DC level). Panelmounted switch/potentiometer

S401 allows the user to adjust the DC base bias of Q10, which causes the output signal to ride on a DC voltage from -10 volts to +10 volts depending on the potentiometer setting.

The output of Q10 is connected to the emitters of Q11 and Q14 through DC blocking capacitor C402. Transistors Q11 and Q14 are used in the common-base mode with the input signal fed into the emitters and the outputs taken from the collectors. Transistors Q12 and Q13 are used as diodes to connect the collectors of Q11 and Q14. The output of Q11 is fed to the base of Q15, which amplifies the positive half of the signal. The output of Q14 is fed into the base of Q 16 which amplifies the negative excursion of the signal. Switch S301 controls the amount of signal entering the amplifier section through the use of a potentiometer. When the ganged DPDT switch is left in its normal in position, the output
will swing 20 volts peak-to-peak (open circuit). Pulling the switch attenuates the signal by 20 dB . Output impedance is approximately 600 ohms in the normal switch position and 50 ohms in the $20-\mathrm{dB}$ position.

The frequency-counter and sweep-generator circuits are shown in Fig. 4. The sweep generator consists of IC17-IC20. The potentiometer section of S801 applies a negative voltage to the inverting input of integrator IC17-a. The input signal is inverted and charges C801 until it reaches the switching threshold of comparator IC17-b. When the switching threshold is reached the output will go high, forward biasing Q 21 which discharges C801 to ground through R806. The output at IC17-a pin 7 is a positive-going ramp and is routed through the linear/log selection switch S801 to either the output buffer amp or the logarithmic ramp generator.

FIG. 4-SWEEP GENERATOR AND SIGNAL ROUTING. Potentiometer R830 applies a negative voltage to IC17-a; C801 charges until it reaches the switching threshold of IC17b, which then forward biases Q1. The output at IC17, pin 7 is a positive-going ramp which is routed through the linear/log selection switch S801 to the output buffer amp or log ramp generator. IC16 is a prescaler chip used to downscale frequencies greater than 10 MHz.

An anti-log generator circuit is made up of IC17-c, IC18-a, -b, IC20-a, and -b, which performs an X^{2} function. IC17- c acts as an input buffer and attenuator. IC18-a and IC20-a drives the emitter of IC20-b in proportion to the input voltage at the base of IC20-a. The collector current of IC20- b varies exponentially with the emitter-base voltage. The current is then converted to a voltage by amplifier IC18-b. Potentiometer R825 sets the balance of IC18b s output between a linear and exponential function while potentiometer R826 controls the output signal level. Thermistor SR801 is necessary to compensate for temperature drift because the output of the circuit is directly proportional to the antilog of the input voltage, and the coefficient of the log term is directly proportional to absolute temperature. Without compensation, the scale factor would also vary directly with temperature. Constant gain is achieved by making the voltage at the base of

IC20-a directly proportional to temperature.

The linear and logarithmic positive-going ramps are buffered by IC19, a CA3140 op-amp, and are converted to a negativegoing ramp. That signal is then fed into ICl pin 2 through R102. Switch-potentiometer S802R831 controls the negative voltage that is coupled to $\mathrm{ICl}^{\text {p }} 2$ when it is in the normal in position. IC1 is controlled by the main frequency-adjust potentiometer S101, which consists of R127 unconnected to S101.
With S802 in the our position, the output of IC19 will be present at IC1. Potentiometer S802 sets the level of the ramp and controls the sweep width. It should be noted that IC1 pin 2 is a summing point and the voltage present from the main frequency control and the sweep generator adds together. The sweep generator starts its sweep at the point determined by the initial voltage at pin 2. For maximum sweep control, the main frequency ad-
just potentiometer should be turned to its minimum level.

Frequency counter

The power supply and frequency counter circuit is shown in Fig. 5. The frequency counter can count either signals generated internally or measure external signals. The external signal is switch coupled through S11 directly through R701, or capacitively coupled through C701, as shown in Fig. 4. When the input signal is directly coupled, the low-pass filter of C708 and R720 is present. Capacitively-coupled signals by-pass the low-pass filter and pass through a high-pass filter. Diodes D701 and D702 clamp the input to protect Q17. Switch S12 selects the gate resistor and sets the input impedance of the circuit. Transistors Q17 and Q18 provide amplification and impedance matching for IC15, an MC10116 ECL triple-line receiver with Schmitt trigger. Differential amplifier Q19 and Q20 provide a single-ended output from the dif-

FIG. 5-POWER SUPPLY AND FREQUENCY COUNTER schematic. Either an internal or external signal source is selected via S14 (Fig. 4). Both signal sources are fed to IC11, a frequency counter and LED driver chip. For input frequencies greater than 10 MHz , prescaling is needed.
ferential outputs of IC15. Switch S13 controls whether the input signal is fed directly from the input amplifier or from the divide-by-100 prescaler to the counter section.

The counter section can take its input from the internal source or from an external source via S14. The internal signal represents the output frequency of the frequency generator and is taken from the junction of D221 and D224. Both signal sources are pulled up to CMOS levels by R502 and fed into IC11, an Intersil frequency counter and LED driver chip. The chip combines a highfrequency oscillator, decade timebase counter, an 8 -decade data counter and latches, 7 -segment decoder, digit multiplexes, and 8segment and 8 -digit drivers. which directly drive multiplexed LED's. The input frequency of the chip is limited to 10 MHz , so prescaling of the input is required to measure higher frequency signals. The 7216 B is a multifunctional chip, performing many useful measuring tasks.

A $10-\mathrm{MHz}$ crystal, XTAL1 with components C501-C504 and R505 set the internal timebase to

10 MHz . That configuration works well with our divide-by-100 prescaler because the timebase can remain the same. only the decimal point takes on a different meaning. In non-prescaled operation, the decimal point on the LED indicates the reading is in kHz , when the input is prescaled, the decimal point indicates the display is read as $\times 10 \mathrm{kHz}$. We'll discuss more about that later.

Gate-time selection is controlled by the main frequency selection switches S1-d through S7-d. They are configured to give gate times of 0.01 seconds in the $1-\mathrm{MHz}$ range, 0.1 seconds in the $100-\mathrm{kHz}$ range, 1 second in the $10-\mathrm{kHz}$ through $10-\mathrm{Hz}$ ranges, and 10 seconds in the $0.1-\mathrm{Hz}$ range. The gate time select (IC11 pin 14) must be connected to the appropriate digit driver to select the required time.

Gate-time selection is achieved by applying 5 volts DC from one of the switches S1- d though S7-d to the control input of one of the quad-bilateral switches of IC1O. Each of the bilateral switches of IC10 controls the digit driver that is connected to the gate-select in-
put. Because switches S1-d through S7-d are dependent (only one can be engaged at any one time) only one of the bilateral switches will have 5 volts on its control input, all the others will be at ground. Resistor R504 hardwires the function select to implement the frequency measuring mode only. Both R504 and R503 are required to reduce ringing at the input, which could result in false selections.

The power supply is fairly straightforward. AC line current is switch-connected through S15 to fuse F1 to the primary of T1. The transformer is center tapped with a secondary voltage of 40 volts and full load current of 0.5 amps. Diode bridge BR1 rectifies the AC secondary voltage and it is filtered by capacitors C601 and C602. Voltage regulators. IC12-IC14, provide $+15,+5$, and -15 volts DC. The ± 20 volts DC is taken right from the bridge circuit. If a 40 -volt AC secondary transformer cannot be found, Zener diodes can be used to drop a high secondary voltage down to the ± 20-volt range. Next time we'll discuss how to build and test the function generator. R-E

SPEAKERPHONES HAVE COME A LONG way since the two－piece units we used to see on the 1958 TV series， The FBI．There，an agent，played by Ephrim Zimbalist Jr．，sat on his chief＇s desk as they＂con－ ferenced＂around the country， planning the capture of the vil－ lain．In those days the units were available only by a rather expen－ sive lease from Ma Bell，and the talk unit and receive section had to be located on opposite sides of the desk to avoid acoustic feed－ back－the same sort of sound that a public address system gen－ erates when the speakers are lo－ cated too close to the micro－ phone．

Today，thanks to some sophis－ ticated electronics，the speaker and the microphone can now be used in a single enclosure．How－ ever，as we will discuss later，there are still acoustic considerations
to contend with．We＇ve all heard what the typical speakerphone sounds like，and that＇s probably why most of us don＇t already own one．Speakerphones have also had a history of being expen－ sive－until now．

The Speaker－Mate speak－ erphone is inexpensive，com－ pact，easy to build，and powered from the phone line．You＇ll still need a regular phone because you can＇t dial out on the Speaker－ Mate，and it doesn＇t have a ringer． But its sound quality is excellent．

A quality speakerphone relies on a balanced combination of electronic design and acoustic physics．With the Speaker－Mate， once an enclosure was chosen， the microphone and speaker were moved to different positions to achieve the best possible sound before making the final de－ sign．

Operation

Modern speakerphones work on a switching principle to mini－ mize audio feedback．Neither the talk path nor the receive path are totally off，but each are attenu－ ated by a factor of 52 dB ，and both sit in an idling mode until one person talks．It＇s similar to voice－controlled transmissions （VOX）used by ham operators， where both station transmitters are off until one operator talks； when they are through the other station can talk．The comparison ends here because with a speak－ erphone，the receiving station can interrupt simply by talking louder．

Figure 1 is a block diagram of the Speaker－Mate．The talk path goes left to right on the upper half of the drawing，and the receive path goes from right to left．Both paths go through their respective

FIG. 1-BLOCK DIAGRAM OF THE SPEAKER-MATE. The talk path goes left to right on the upper half of the drawing, and the receive path goes from right to left.
attenuators which are controlled by the attenuator control block. That section gets its data from level detectors on both circuit paths. The detectors are interconnected with backgroundnoise monitors.

One of the requirements of the speaker-phone design is to differentiate between speech, which constantly varies in amplitude, and constant background noise. When constant and unvarying noise is heard, the attenuator control mutes both paths until speech is read. A separate detector is provided to attenuate the dial tone; it is not a single tone and does not qualify as noise. The Z balance network matches both paths to the phone line.

Circuitry

Referring to the schematic in Fig. 2, the 600 -ohm balanced telephone line is coupled to the

FIG. 2-SPEAKER-MATE SCHEMATIC. The $\mathbf{6 0 0}$-ohm balanced telephone line is coupled
to the device through T1, a 600-to-600 ohm transformer. A Zener diode limits transient

PARTS LIST

All resistors are $1 / 4$-watt, 5%
R1, R9, R23- 10,000 ohms
R2, R13, R25- 100,000 ohms
R3, R12, R24-5100 ohms
R4, R10- 56,000 ohms
R5, R11-220,000 ohms
R6, R7, R16, R17-1000 ohms
R8- 330 ohms
R14-120,000 ohms
R15-25,000 ohms, PC-mount vertical potentiometer
R18- 680 ohms
R19, R21-33,000 ohms
R20- 50,000 ohms, potentiometer with switch (S2)
R22-1 megohm
R26-10 ohms

Capacitors

C1- $0.01 \mu \mathrm{~F}$, ceramic disk
C2, C5- $0.005 \mu \mathrm{~F}$, ceramic disk
C3, C10, C13, C21, C26-0.05 $\mu \mathrm{F}$ ceramic disk
C4, C16, C25- $47 \mu \mathrm{~F}, 16$ volts, radial electrolytic
C6, C9, C11, C12, C18, C22, C23, C24-0.1 $\mu \mathrm{F}$, ceramic disk

C7, C8, C14, C15, C19-2.2 $\mu \mathrm{F}, 16$ volts, radial electrolytic
C17-220 $\mu \mathrm{F}, 16$ volts, radial electrolytic
C20- $22 \mu \mathrm{~F}, 16$ volts, radial electrolytic
C27-1000 $\mu \mathrm{F}$, 16 volts, radial
electrolytic
Semiconductors
IC1-MC34118P voice-switched speakerphone, Motorola
IC2-MC34119P low-power audio amplifier, Motorola
D1-1N4733 5.1-volt Zener diode, or equivalent
LED1-high efficiency red light-emitting diode, GI MV5774 or equivalent
BR1-50-volt bridge rectifier, RB115 or equivalent

Other components

MIC1-electret microphone element
T1-600-to-600 ohm PC-mount transformer, 0.75 -inch mounting center
J1-modular PC-mount phone jack S1-SPST toggle switch

S2-SPST switch (mounted on potentiometer R20)
Miscellaneous: Cabinet, PC board, $3 / 8$-inch I.D. rubber grommet, 3 -inch 8-ohm speaker, knob, modular phone cord, wire, solder, RTV silicon glue, etc.
Note: The following items are available from Project-Mate, 2727 W. Manor PI., Seattle, WA 98199 (206) 283-4700:

- A kit containing a PC board and all listed parts except the cabinet, speaker, and modular phone cord- $\$ 46.00$.
- Pac-Tec cabinet with silkscreened front panel- $\$ 18.50$ - 3-inch speaker-\$3.75.
- Drilled and plated PC board$\$ 11.50$
- IC1 and IC2-\$18.50
- Ring detector kit including piezo transducer- $\$ 9.50$
Include $\$ 3.50$ shipping and handling and allow 2 weeks for delivery. 15\% discount on orders of 2 or more similar items.

Speaker-Mate through T1, a 600-to-600 ohm transformer. Switch Sl in series with T1 provides the answer function, and when the circuit is closed (off-hook), current flows through BRI which produces a DC voltage of 6-8 volts. A Zener diode across the output limits transient spikes and regulates the supply to 5.1 volts which powers the circuit and optional LED1. The LED, if used, should be of the high-efficiency variety, because R6 limits its current to 2 mA to minimize telephone-loop current drain. The secondary of Tl is fed to IC1, a Motorola MC34118P voiceswitched speakerphone chip, which controls all functions except driving the speaker. That is

FIG. 3-YOU CAN ADD a microphone gain adjustment to allow for different environments and applications. The gain is the ratio of R2/R1. With R1 at 1 K , the gain is 220 , and with R1 at 26 K , the gain is 8.5 .
done by IC2, a Motorola MC34119P low-power audio amplifier IC. Both IC's can operate from less than 3 volts.

Potentiometer R20 controls the volume and is limited in range by R19 which sets the high level, and R21 which sets the low

FIG. 4-PARTS-PLACEMENT DIAGRAM. Mount the two IC's first to provide a good reference for the rest of the components. Use sockets for both IC's, especially for the 28pin chip.

FIG. 5-MICROPHONE MOUNTING scheme. A rubber grommet is glued to the inside of the front panel behind the microphone opening. The microphone should not touch the front panel, but if it's too far recessed it will give an echo sound.
level. The low end is set to not completely turn off the audio and the high end limits the current required by the power amplifier to within the parameters allowed by the telephone loop current. Excessive audio would create a pumping sound due to the voltage dropping on audio peaks. Potentiometer R20 can be either linear or audio taper with very little effect on the sound, due to the limiting resistors.

We found it desirable to add a microphone gain adjustment to allow for different environments and applications. That was done by adding a 25 K potentiometer (R15) in series with a 1 K limiting

FIG. 6 -THE COMPLETED PROTOTYPE. The front panel included with the kit makes for a nice finishing touch.

FIG. 7-EXTERNAL POWER ADDITION. The parts can be mounted on the rear panel and wired into the board. S3 will switch the unit between being line-powered and powered from an external source.
resistor (R16). Figure 3 shows how the circuit works; the gain is calculated by the ratio of R2/R1. Using the actual values in the circuit, and with R1 at 1 K , the voltage gain should be 220, and with R1 increased to 26 K , the gain will reduce to 8.5 . In actuality, these figures will be approximately 10 percent less because of other factors. Ideal AC coupling from the microphone $(0.2 \mu \mathrm{~F})$ is provided by two $0.1 \mu \mathrm{~F}$ capacitors in parallel (C22 and C23) ; the $0.1 \mu \mathrm{~F}$ capacitors are much easier to obtain.

The other components provide filtering and talk/listen time constants. Resistor R22, when grounded, provides approximately a 20 percent capture advantage to the speakerphone user; without it, the unit will idle halfway between listen and talk.

With R20 connected to V_{CC}, the calling station will have the slight capture advantage, and of the three options, we found that R22 to ground worked best.

Construction

Because the Speaker-Mate is designed with some tight time constants, it is highly recommended that suggested part values be followed for optimum performance. And, although a variety of project cases can be used, the electronics and the physical layout were tuned for the enclosure used with the prototype; it is available from many different distributors as well as from the source mentioned in the parts list. The project case comes with a professionally screened front panel when purchased from that source.

With the exception of the frontpanel mounted components and the speaker, all parts fit on the PC board; a foil pattern is provided if you want to etch your own board. A pre-etched board is available separately, as is a kit that includes the PC board and all other parts to completely build the Speaker-Mate project.

A parts-placement diagram is shown in Fig. 4. Mounting the two IC's first gives a good reference for the rest of the component mounting. Double check the polarity of each IC before soldering, and note that pin 1 goes on the square pad on the PC board. (Incidentally, the other square pads indicate jumpers or external leads.) It is suggested that you use IC sockets for both IC's, especially for the 28-pin chip.

The resistors can be mounted next, their clipped leads can be used as jumpers (J) where necessary. However, don't install the jumpers at this time. Diode D1, bridge rectifier BR1, and the electrolytic capacitors are polarized and should be checked carefully before mounting. The phone jack, Jl, has plastic "feet" on the bottom of it. After positioning the jack on the PC board, the feet should be melted apart on the underside of the board with the tip of your soldering iron to provide mechanical strength. Be continued on page 66

MONITOR TESTER

SERVICING COMPUTER monitors isn't all too different from servicing composite-video monitors and television sets. There are some very important differences, however, the most obvious of which is that most computer monitors don't operate on the NTSC horizontal frequency of 15.734 kHz and vertical frequency of 59.94 Hz . Sinceyour standard video test gear can't be used, you need a new troubleshooting tool-a computer-video sync generator.

Well show you how to build a "sync generator" that provides horizontal sync, vertical sync, and RGB video for three popular styles of monitors: CGA, EGA, and VGA. Without connecting the monitor to a computer, you'll be able to verify video, deflection, and DC supply generation. Once repairs are made, fine tuning adjustments can be done with the monitor connected to a computer using appropriate software. However, using the sync generator first prevents tying up a computer that could be used more productively elsewhere.

Circuit description

The sync generator is a complex frequency-divider circuit. The starting point is two TTL clock oscillators-one is 5.0688 MHz (OSC1) and the other is $4.9152-\mathrm{MHz}$ (OSC2). Depending upon two switch settings, one of the clock signals gets routed to various divider stages, ultimately leading to the final stage, a 4-bit binary counter.

> Our sync generator lets you test computer monitors without having to connect them to a computer:

GARTH PRICE, CET

VGA operation

Referring to the schematic in Fig. 1, switch S2, when closed, places a logic " 0 " (a low) on pin 1 of IC6, a 74 HCl 58 quad 2 -line to 1 -line selector, so all "A" inputs will be passed to the " Y " outputs. The output of OSC1, a TTL clock oscillator, is then passed from pin 14 of IC6 (A4) to pin 12 (y4) and then to the cle input (pin 8) of IC3, a 74LS164 shift register. (NOTE: It is important that the EGA/VGA switch S2 is in the proper position for the type of monitor in use. An improper horizontal sync frequency can easily cause damage to deflection circuits!)

At the same time, the ge^{E} output of IC3 (pin 10) is fed
through a 74 HC 14 Schmitt inverter (IC2d) into the as input of IC6 (pin 11). That signal is then passed to the Y3 output (pin 9), through R10, to the base of Q 1 , and to IC3's cle input (pin 9). As a result, the clock signal is divided by five and used as a reset, so every fifth clock pulse causes a clear to occur.
As just mentioned, shift register IC3 divides its clк input (OSCI's output) by five (5.0688/5 = 1.01376). In other words, all of the " 8 " outputs have a frequency of $1 / 5$ the clock input, but only when the chip is reset by its own ge output. The gc output (which is also $1 / 5$ the clock input when the chip is reset by g^{E}) of IC3 (pin 5) sends the $1.01376-$ MHz signal to IC4-a's (a 74 LS74 D-type flipflop) clк input (pin 3) where it is further divided by 2 , so the net division is ten.
With that division by ten, a $506.88-\mathrm{kHz}$ signal is sent to pin 2 of IC6 (A1), passed through to pin 4 (y1), and on to binary counter IC5's (a 74LS163) clk input (pin 2). Counter IC5 divides the signal by 16 to produce a horizontal sync of 31.68 kHz with a pulse width of 2 microseconds. Counter IC5 also divides the cle input by two for generating blue (QA . pin 14), by four for red (8B, pin 13), and by eight for green (gc, pin 12). In other words, blue video is gated eight times the horizontal sync, red video four times. and green twice. The monitor thus lights up with yellow, cyan, green, magenta, red, blue, black, and white bars, and then repeats. (Note that the CGA/EGA

FIG. 1-MONITOR EXERCISER SCHEMATIC. When operating the unit, make sure that EGAVGA switch S2 is in the proper position for the type of monitor in use. An improper horizontal sync frequency can cause damage to deflection circuits.

FIG．2－POWER SUPPLY．If you don＇t have a suitable 5 －volt DC power supply available， you can build this one．
color sequence is the reverse of VGA．）

Vertical sync is generated by sending horizontal sync to pin 1 of IC8－a，a 74LS393 binary coun－

PARTS LIST

All resistors are $1 / 4$－watt， 5% ．
R1－24，000 ohms
R2，R3－ 5100 ohms
R4，R10，R13－ 10,000 ohms
R5，R11－100 ohms
R6，R12－ 1000 ohms
R7－R9－620 ohms
R14－56 ohms

Capacitors

C1－ $1000 \mu \mathrm{~F}, 50$ volts，electrolytic
$\mathrm{C} 2-10 \mu \mathrm{~F}, 10$ volts，electrolytic
C3－C13，C16，C17－0．01 $\mu \mathrm{F}, 50$ volts，ceramic
C14－ $0.022 \mu \mathrm{~F}, 50$ volts，ceramic
C15－ $100 \mathrm{pF}, 50$ volts，ceramic

Semiconductors

IC1－74HC04 hex inverter
IC2－74HC14 hex Schmitt trigger inverter
IC3，IC9－74LS164 shift register
IC4－74LS74 D flip－flop
IC5－74LS163 4－bit binary counter
IC6，IC7－74HC158 2 －line to 1 －line selector
IC8－74LS393 dual 4－bit binary counter
IC10－LM340T－5．0 5 －volt regulator
OSC1－ $5.0688-\mathrm{MHz}$ TTL clock oscillator
OSC2－4．9152－MHz TTL clock oscillator
D1－1N4001 diode
D2，D3－1N5711 Schottky diode
Q1，Q2－MPS6515 NPN transistor

Other components

F1－0．25－amp AGC fast－blow fuse
J1－DE9S 9－pin female connector
J2－HD DB15S 15－pin high－density female connector
S1，S2－SPST switch
S3－DPDT switch
T1－120／6．3VAC transformer
Miscellaneous：AC linecord，wire－ wrap IC sockets，metal enclosure， wire，solder，etc．
ter，where it ends up divided by 64 at pin 10 of IC8－b and fed into the cLK input（pin 8）of IC9，an－ other 74LS 164 shift register．The CLR input to IC9（pin 9）ultimate－ ly comes from its own gG output via IC6＇s A2 input（pin 5），its Y2 output（pin 7），Schmitt inverter IC2－f，and transistor Q2．Using IC9＇s gG output to reset itself causes a division of its clock in－ put by 7．Therefore，the horizon－ tal sync is first divided by 64 by IC8，then divided by seven by IC9，making a total division of 448．Therefore，a $70.71-\mathrm{Hz}$ signal （ 31.68 kHz divided by 448 ）with a $60-\mu \mathrm{s}$ pulse width is sent from IC9 pin 3 to pin 14 of J 2 ，a 15－pin high－density VGA connector，via C13，R13，and Schmitt inverter IC2－e．

CGA／EGA1 operation

When switch S 2 is set to ＂EGA，＂it places a logic＂1＂（a high）on pin 1 of IC6，which then connects its＂B＂inputs to the＂Y＂ outputs．When S3 is set to＂Mode 1 ，＂it places a logic＂ 0 ＂（a low）on pin 1 of IC7，another 74 HCl 58 selector，which connects its＂A＂ inputs to the＂ Y ＂outputs．Now

FIG．3－THE AUTHOR＇S PROTOTYPE． Perforated construction board and wire－ wrap techniques were used to assemble the project．

IC7 uses OSCl as its timing source which is input at pin 2 and output at pin 4．That，in turn，is input to pin 13 of IC6 and output at pin 12．From pin 12 of IC6，OSC1 is to IC3＇s CLK input （pin 8）．Because IC3＇s ge output （pin 10）is tied back to its CLR input（pin 9）via IC7 pins 5 and 7. IC6 pins 10 and 9．R1，and Q1， IC3 divides OSC1 by five．

Output gC of IC3，which is also OSC1／5 because ge is used as the clear signal，routes 1.014 MHz （5．0688／5）to pin 3 of IC4－a，caus－ ing further division by four at pin 9 of IC4－b for a total division of 20 （ 253.44 kHz ）．The $253.44-\mathrm{kHz}$ output from IC4 pin 9 is con－ nected to pin 3 of IC6 via IC7 pins 11 and 9 ．The input to pin 3 of IC6 is output at pin 4，and from there it goes to S3 and the clk input of IC5（pin 2）．After IC5 divides the 253.44 kHz by sixteen，the hori－ zontal sync measures 15.84 kHz ．

Vertical sync is generated by di－ viding horizontal sync（ 15.84 kHz ）by 256 at pin 8 of IC8．That output connects to C12，R1，IC2－ b，and pin 14 of IC7．The 61.88 Hz vertical sync signal with a $190 \mu \mathrm{~s}$ positive pulse width is then sent to pin 9 of output jack J1 via IC7 pin 12.

EGA2 operation

When S2 is set to＂EGA，＂it places a high on pin 1 of IC6． which then selects its＂B＂inputs． With S3 set to＂Mode 2，＂it places a high on pin 1 of IC7 so it also selects＂B＂inputs．With the＂B＂ inputs selected，IC7 uses OSC2 as its timing source and 4.9152 MHz passes from pin 4 of IC7 to pin 13 of IC6．The signal then connects to IC3＇s cLK input（pin 8）from pin 12 of IC6．The $9 G$ output from IC3 is connected to IC6 pin 10 via IC7 pins 6 and 7. The signal is then output at pin 9 of IC6，and connects back to the CLR input（pin 8）of IC3．The OSC2 signal is divided by seven by IC3 producing 702.17 kHz at IC3＇s gc output．The gC output from IC3 ties to IC4－a，which causes an additional division by 2 ，for a net of 14 ．The 351.08 kHz from IC4－a pin 5 is connected to IC5＇s clk input（pin 2）via IC7 pins 10 and 9，and IC6 pins 3 and 4．The signal is further divided by continued on page 94

We begin our in-depth survey of optoelectronic systems by taking a close look at a wide variety of LED circuits.

RAY MARSTON

optical electronic devices are so widely used in today's consum-er-electronics that it's hard to come across a product that doesn't use light-emitting diodes (LED's) in one way or another. If you've ever had a need to use LED's or specialized flashing devices in your circuit.design, we might be of some help to you. We ll start by presenting some basic information on LED's, then we ll take a look at some multiLED packages. Finally, we'll round-off with a discussion of different types of flasher circuits used for controlling LED's.

LED basics

LED's are commonly used as visual indicators because of their fast response time and high efficiency. When compared to tung-sten-filament lamps, their typical energy conversion efficiency is ten to fifty times greater and their response time is one hundred to one thousand times faster. LED's are widely available in red, orange, yellow and green colors.

Figure 1 shows the standard LED symbol and typical forward voltages of different colored LED's. The device is a genuine diode, and a voltage of approximately 2 volts is produced across it when it is passing a forward current of 20 milliamps. If an LED is reverse biased, it will avalanche or "Zener" at a fairly low voltage value, as shown in Fig. 2. Most LED's have maximum reverse voltage ratings in the range of 3 to 5 volts.

CATHODE (K)				
LED1 ANODE (A)				
COLOR	RED	ORANGE	YELLOW	GREEN
V_{F}	1.8 V	2.0 V	2.1V	2.2 V

FIG. 1-LED SYMBOL AND TYPICAL forward voltages of standard LED's at $\mathrm{I}_{\mathrm{F}}=\mathbf{2 0}$ milliamps.

FIG. 2-GRAPH SHOWING REVERSE biased LED responding as a Zener diode.

FIG. 3-METHOD OF FINDING the currentlimiting resistance value for a given $\mathbf{V}_{\mathbf{S}}$ and I_{F}.

When an LED is used, a resistor or other suitable current-
limiting device must be wired in series with it. The current-limiting resistor value can be calculated for a specific forward current, I_{F}, and supply voltage, V_{S}. as shown in Fig. 3, being.

$$
\mathrm{R}=\left(\mathrm{V}_{\mathbf{S}}-\mathrm{V}_{\mathrm{F}}\right) / /_{\mathrm{F}} .
$$

In practical applications, the series resistor can be connected to either the anode or the cathode of the LED. The LED brightness is proportional to the LED current; most LED's will operate safely up to absolute maximum currents of 30 to 40 milliamps. With a DC supply voltage and a suitable line dropping resistor, the current through the LED should be maintained at a constant value of approximately 20 milliamps.

An LED can be used as an indicator in an $A C$ circuit by wiring a diode in inverse parallel with it, as shown in Fig. 4. The diode prevents the LED from becoming reversed biased on the negative half of the sine wave cycle. For a given brightness, the line dropping resistance value in an AC circuit should be one half that used in a DC circuit. When an LED is used in an AC circuit, the forward current conducts through the LED only during the positive half of the sine wave cycle, after the LED has reached its threshold voltage of about 1.5 volts. Therefore, the LED conducts current less than one half the time in an AC circuit as it does in a DC circuit. In order to achieve the same average current through the LED with an AC supply, approximately twice as much current must flow so the resistance value must be reduced by one half.

One of the first problems you will encounter when using an LED is identifying its polarity. The cathode on most LED's is identified by a notch or flat surface on the component, or by a short lead. That practice is not universal, however, so the only accurate way to identify the polarity of an LED is to test it in the basic circuit of Fig 3; try the LED in both positions, when it glows, the cathode is the most negative of the two terminals. It is always a good practice to test an LED before soldering it onto the PC board.

FIG. 4-AN LED USED IN AN AC circuit; D1 is wired in inverse parallel to prevent the LED from being reverse biased.

Special mounting kits are available for securing LED's onto PC boards and front panels. Those kits consist of a special mounting grommet and grooved ring shown in Fig. 5-a. If mounting hardware is not available, you can drill panel holes and either epoxy the LED into place or solder its leads into a PC board, which can support the LED. That method is shown in Fig. 5-b.

LED packages

LED's can be purchased as single components, as shown in Fig. 1 , or in a multi-LED package. The most common type of multi-LED package is the 7 -segment display, comprising seven or eight LED's packaged for displaying alphanumeric characters. Another

FIG. 5-LED MOUNTING METHODS; (a) shows an LED mounting kit consisting of a grommet and retaining ring, and (b) shows an LED mounted in a drilled hole with epoxy or soldered leads.
well-known type of multi-LED package is the bar-graph display. which is made up of ten to thirty linearly-mounted LED's. An example of a ten-element LED package is shown in Fig. 6-a.

Most LED's provide only a single output color. There are, however, a few specialized LED packages that provide multicolor outputs. Those devices actually consist of two LED's contained in one package. Figure 6-b shows a bi-color LED which is comprised of a pair of LED's connected in inverse parallel. The color green is emitted when the device is biased in one direction.

FIG. 6-MULTI-LED PACKAGES; (a) is a 10 -element LED, and (b) is a 2 -color LED which contains two LED's connected in inverse parallel.
and red or yellow is emitted when it is biased in the reverse direction. The bi-color LED is useful for giving polarity indication and null detection.
Another type of multi-color LED is shown in Fig. 7. This four color LED is made by mounting a green and red LED in a 3-pin common-cathode package. That device can generate green or red colors by turning on only one LED at a time, or it can generate orange and yellow by turning on the two LED's in the current ratios shown in the table.
A very important practical point concerns the use of "sec-ond-grade" or "out-of-spec" devices advertised as bargain packages. Those devices often have forward voltage drops in the range of three to ten volts. Al-

FIG. 7-MULTI-COLOR LED; this LED gives four colors from two junctions as shown in the current ratios given in the table.
though "second grade" LED's may be suitable for many applications, it's always a good idea to test those devices before using them in your circuit, as we said earlier.

Multi-LED circuits

A number of LED's can be driven from a single source by wiring all LED's in series as shown in Fig. 8. The supply voltage used in that circuit is equal to the sum of the individual LED forward voltages and the voltage drop across the line-dropping resistor. The line-dropping resistance value can be calculated by using the equation

$$
R=\left(V_{S}-V_{F T}\right) / I_{F} .
$$

The total forward voltage, V_{FT}, is the sum of the forward voltage drop of each LED.

The circuit shown in Fig. 8 draws minimal total current, but is limited in the number of LED's that it can drive. A number of those series LED circuits can,

FIG. 8-LED's WIRED IN SERIES and driven by a single current-limiting resistor.

FIG. 9-A NUMBER OF SERIES LED circuits can be wired in parallel, to drive multiple LED's.

FIG.10-THIS CIRCUIT CAN DRIVE a large number of LED's, but at the expense of high current.

FIG. 11-NEVER USE THIS LED driving circuit. One LED will draw all of the current.
however, be wired in parallel, so that almost any number of LED's can be driven from a single source, as shown in the 6-LED circuit of Fig. 9.

An alternate but less efficient method of driving multiple LED's is to simply wire a number of dropping resistors and LED's in parallel, as shown in Fig. 10. That type of circuit will work, but it draws a significant total current, which is equal to the sum of the individual LED currents.

Since we're on the subject of how to connect multiple LED's, lets discuss what not to do. Never hook-up multiple LED's as shown in Fig. 11. That circuit will not work properly because of inevitable differences in the for-ward-voltage characteristics of the LED's, one LED will usually draw most of the available cur-
rent, leaving little or none left for the remaining LED's.

Three widely used types of visi-ble-output LED-control circuits are those used for LED flashing. LED sequencing, and LED dot or bar analog-value indication. LED flasher circuits are designed to turn an LED alternately on and off, to give an eye-catching display action. Those circuits may control a single LED, or they may be designed to control two LED's in such a way that one turns on as the other turns off.

A special LED-flasher IC is available, the LM3909, which can be used to flash an LED from a low voltage DC supply, and does so at a very low average current level. Some practical LED flasher circuits using the LM3909 IC are shown later in this article.

LED sequencer circuits are designed to drive a chain of LED's so that each LED in the chain is switched on and off in a timecontrolled sequence, so that a ripple of light seems to run along the chain.

LED analog-value indicator circuits are designed to visually appear and respond as an analog meter. An analog-value LED circuit drives a chain of linearlyspaced LED's in such a way that the length of the chain that is illuminated is proportional to the analog value of a voltage applied to the input of the driver circuit.

LED-flasher circuits

One of the simplest types of LED display circuits is the LED flasher, in which a single LED repeatedly switches alternately on and off, usually at a rate of one or two flashes per second. A 2-LED flasher is a simple modification of this circuit, but is arranged so that one LED switches on when the other switches off. A 2-LED transistor flashing circuit is shown in Fig. 12.

In the flashing circuit shown in Fig. 12, Q1 and O 2 are wired as astable multivibrators, with their switching speeds determined by time constants R3 \times C1 and R $4 \times \mathrm{C} 2$. The circuit operates at about 1 flash per second using the component values shown. The 2-LED flashing circuit can be converted to single-LED operation by replacing the unwanted

LED with a short circuit.
An IC version of the 2-LED flasher is shown in Fig. 13. That design is based on the dependable 555 timer chip, or its more modern CMOS counterpart, the 7555. The IC is wired in the astable mode, with its time constant determined by R4 and C1. The output at pin 3 of the IC alternately switches between the ground and the positive supply voltage, alternately shorting out

FIG. 12-TWO-LED FLASHER circuit operates at 1 Hz ; Q1 and Q2 respond as astable multivibrators while LED1 and LED2 alternately flash on and off.

FIG. 13-TWO-LED FLASHER circuit operates at 1 Hz using a 555 or 7555 timer IC.

FIG. 14-FOUR-LED DOUBLE-BAR flasher in a "cross" configuration; the flashing rate is variable from 15 to 2000 flashes per minute.
and disabling LED1 or LED2. The flashing circuit can be converted to single-LED operation by shorting out the unwanted LED and its associated current-limiting resistor.

A visually interesting display can be produced with a useful modification of the above circuit, shown in Fig. 14. Two pairs of series-connected LED's are connected in the form of a cross so that the visual display alternately switches between a horizontal bar (LED1 and LED2 on) and a vertical bar (LED3 and LED4 on). The flash rate is made variable via potentiometer R5 and can range between 15 and 2000 flashes per second.

Flasher IC LM3909

A seemingly trivial task that sometimes faces the design engineer is that of providing illuminated power indication of the ON state of an electronic unit or the location of a passive device such as a fire extinguisher or emergency switch in a darkened room. LED's operate reliably when main power is available, but a serious problem arises when batterypowered equipment is involved.

LED indicators typically draw about 12 milliamps when illuminated and can therefore place a fairly heavy strain on small supply batteries. Since LED's drop two or more volts under the on condition, they can not readily be powered from battery voltages below about 3 volts.

National Semiconductor provides an ingenious solution to the problem of LED power drain and operation from weak batteries with the 8-pin LM3909 LED flasher/oscillator IC. The LM3909 IC is a low-duty-cycle (brief on period, long off period) oscillator that provides a voltagedoubled, high-current pulse to an external LED. High pulse currents of up to 100 milliamps are produced from the IC, while still drawing very low average currents of about 0.3 to 1.5 milliamps. Because of the voltagedoubling capability, the LM3909 can flash an LED even when powered from battery voltages as low as 1.1 volts, and can provide months, or even years, of continuous flashing operation from a

FIG. 15-INTERNAL CIRCUIT AND external connections of the LM3909 low-voltage LED flasher IC.
single 1.5 -volt cell.
The LM3909 requires the addition of only a battery and a timing capacitor to function as an LED flasher. The internal circuit of this IC, together with typical external connections for $1.5-$ volt flasher operation, are shown in Fig. 15. In that particular application, the LED receives current via the $270-\mu \mathrm{F}$ timing capacitor C1, R1, and Q3 for only about 1% of the time. All transistors except 84 are off for the remaining part of each operating cycle. Resistor R9 draws only about $50 \mu \mathrm{~A}$. The timing capacitor C 1 is charged through R2 and

FIG. 16-LED FLASHER USING 1.5 VOLT SUPPLY. TABLE shows estimated battery life under continuous 1.5 -volt LED flashing operation.

FIG. 17-MINIMUM POWER, longer life, $1.1-\mathrm{Hz}$ flasher. Average drain current is 0.32 milliamps.

FIG. 18-FAST 1.5 -VOLT BLINKER; flash rate is 2.6 Hz and drain current is 1.2 milliamps.

FIG. 19-VARIABLE-RATE FLASHER.

R3 and through R5 connected between pins 1 and 4 of the IC.
Transistors Q1 through Q3 remain off until C1 becomes charged to about 1 volt. That voltage is determined by the junction drop of Q4, its base-emitter voltage divider, consisting of R6-R7. and the junction drop of Q 1 . When the voltage at pin 1 becomes a volt more negative than that at pin $5\left(+V_{\mathrm{S}}\right), \mathrm{Q} 1$ begins to conduct and turns Q_{2} and Q 3 on. The IC then supplies a pulse of high current to the LED. The current gain of Q2-Q3 is approximately 500. Transistor Q3 can handle over 100 milliamps of collector current, and rapidly pulls pin 2 close to ground, pin 4. Since C1 is charged at that time. it forces the pin 1 terminal below the ground potential value. As a result of the pin 1 terminal being less than the ground potential, the one-volt drop across the LED is greater than the supply voltage value-R1 then limits the LED current to a safe value.
Capacitor C1 alternately charges via the timing resistor R5 and discharges via the LED and R1 in this application. In some other applications, the
short between pins 1 and 8 can be removed, enabling the capacitor to charge through a total of 9 kilohms, increasing the duty cycle and reducing the average current drawn. If voltage boosting is not needed, loads can be wired directly between pins 2 and 6 or pins 2 and 5 of the IC.

The LM3909 IC is thus a fairly versatile device. A variety of useful applications are shown in the remaining part of this article.

Practical LM3909 circuits

The LM3909 circuits shown in Figs. 16 and 17 can be used as locator beacons for fire extinguishers, emergency switches, and boat-mooring floats because of their low voltage operation and low current drain. The circuit shown in Fig. 16 gives a brief flash once every second or so, and typically draws an average current of only 0.63 milliamps. As shown in the table, that circuit will continually operate for three to thirty months from a battery, depending on the size and type of cell that is used.

An even longer life can be obtained from the minimum-power flasher circuit shown in Fig. 17. That circuit is similar to the one described above, except that the short is removed from between pins 1 and 8, causing the capacitor to charge via 9 kilohms of internal IC resistance (R4+R5). The IC then operates with an increased duty cycle, and reduced average current is drawn. That circuit has a typical current drain of 0.32 milliamps.

A circuit similar to that of Fig. 17 can be designed for use with a 3 -volt power supply. For 3 -volt operation, the timing capacitor value should be increased to $270 \mu \mathrm{~F}$ for approximately the same flash

FIG. 20-HIGH EFFICIENCY LED indicator gives seemingly "continuous" operation from 1.5 volts. The current drain is 4 milli4 amps.

FIG. 21-THIS WARNING FLASHER CAN OPERATE within a voltage range of 5 to 200 volts according to capacitor and resistor values specified in the table.
rate of 1 Hz . The average drain current for that circuit is 0.77 milliamps, which is more than twice the drain current of the 1.5volt flashing circuit.

Another variation of the 1.5volt flasher shown in Fig. 18 operates at a frequency of 2.6 Hz . In that circuit, the internal timing resistors are shunted by an external 1-kilohm resistor; the charging time constant is reduced, the duty cycle is decreased and the average current drain rises to 1.2 milliamps. The circuit gives a far more noticeable flasher indication than the three previous circuits, but at the expense of a much higher current drain.

If you enjoy experimenting with circuits, you can build the variable-rate flasher shown in Fig. 19. The flashing rate is varia-
lumination and has a rather modest battery drain of about 4 milliamps.
All of the LED flasher circuits we have discussed in Figures 16 through 20 are intended for operation from 1.5 - or 3 -volt supplies. The LM3909 can also be used with much higher supply voltages, ranging from 5-200 volts DC. The internal 6.5 -volt Zener diode, wired between pins 2 and 4 of the IC, regulates the voltage between the LED cathode and ground. Those circuit configurations can be made with a minimum number of external components, as shown in the schematic of Fig. 21.

As a final circuit suggestion, you can built a useful flashlightfinder shown in Fig. 22. The LM3909, $200-\mu \mathrm{F}$ timing capaci-

FIG. 22-A SIMPLE FLASHLIGHT FINDER; THE LM3909, capacitor and LED are installed inside a translucent cap mounted on the end of the battery.
ble from zero to 20 Hz via potentiometer R4. Resistors R1 and R2 are used to stabilize the duty cycle of the circuit and maintain a fairly steady apparent brightness level as the flashing rate is varied.
The Fig. 20 circuit is designed to give apparently continuous illumination of the LED when powered from a $1.5-$ volt cell. The circuit operates as a $2-\mathrm{kHz}$ square-wave generator: resistors R1 and R2 are used to approximately equalize the on and off times of the generator. The circuit gives a fairly dim LED il-
tor and LED are installed inside a translucent cap mounted on the end of the flashlight. An insulated contact strip connects to the positive terminal of the battery and passes through the case for connection to pin 5 of the IC. The negative terminal of the battery connects to pin 4 (ground) of the IC. If a single-cell light is used. short pins 1 and 8. Drawing current through the lamp filament simplifies wiring and causes negligible power loss since the resistance of a cold bulb is less than 2 ohms.

R-E

This Christmas give an electrifying gift ... plug a friend into Radio-Electronics and brighten his whole new year! Whether electronics is his livelihood or his hobby, your gift will sharpen his focus and illuminate the whole spectrum of electronics throughout the coming year.

Radio-Electronics will keep him informed and up-to-date with new ideas and innovations in all areas of electronic technology ... computers, video, radio, stereo, solid state technology, satellite TV, industrial and medical electronics, communications, robotics, and much, much more.

He'll get great plans and printed circuit patterns for great electronic projects. In just the last year, Radio-Electronics has presented voice scramblers, video switchers, frequency standards, wireless audio links, radiation monitors, function generators, and much more.

In coming issues, Radio-Electronics will present practical, educational, and money-saving projects like: a helium-neon laser ... a lighting controller ... a video timebase corrector ... a video noise processor ... a light-beam communicator ... an antenna amplifier ... and many others!

PLUS ... equipment troubleshooting techniques ... circuit design ... reports on new technology and new products ... equipment test reports ... indepth coverage on computers, video, audio, shortwave radio ... and lots more exciting features and articles.

SAVE $\$ 19.43^{*}$... OR EVEN $\$ 38.86^{*}$... For each gift of Radio-Electronics you give this Christmas, you save a full $\$ 19.43^{*}$ off the newsstand price. And as an R-E gift donor, you're entitled to start or extend your own subscription at the same Special Holiday Gift Rate-you save an additional \$19.43*!

No need to send money ... if you prefer, we'll hold the bill till January, 1992. But you must rush the attached Gift Certificate to us to allow time to process your order and send a handsome gift announcement card, signed with your name, in time for Christmas.

So do it now ... take just a moment to fill in the names of a friend or two and mail the Gift Certificate to us in its attached, postage-paid reply envelope. That's all it takes to plug your friends into a whole year of exciting projects and new ideas in Radio-Electronics!

Enter A World Of Excitement with a Subscription to Popular Electronics

Get the latest electronic technology and information monthly!

Now you can subscribe to the magazine that plugs you into the exciting world of electronics. With every issue of Popular Electronics you'll find a wide variety of electronics projects you can build and enjoy.
Popular Electronics brings you informative new product and literature listings, feature articles on test equipment and tools-all designed to keep you tuned in to the latest developments in electronics. So if you love to build fascinating electronics, just fill out the subscription form below to subscribe to Popular Electronics...It's a power-house of fun for the electronics enthusiast.

EXCITING MONTHLY FEATURES LIKE:

- CONSTRUCTION-Building projects from crystal sets to electronic roulette
FEATURES-Educational training on digital electronics, Ohm's Law, Antennas, Communications, Antique Radio, Simplified Theory
- HANDS-ON-REPORTS-User test comments on new and unusual consumer products
\square SPECIAL COLUMNS-Think Tank, Circuit Circus, Computer Bits, DX Listening, Antique Radio, Amateur, Scanner Scene

PLUS: ALL OUR GREAT DEPARTMENTS!

You'll get 12 exciting and informative issues of Popular Electronics for only $\$ 18.95$. That's a savings of $\$ 16.45$ off the regular single copy price. Subscribe to Popular Electronics today! Just fill out the subscription order form below.

Popular Electronics
A Buyer's Guide to DMM's Explorethe cisital-mulimper. marketplace ata
Does Your Meter
Lie To You?
Even the best meter can load
you astray if you don't futly you astray if you don't fully understand what you are measuring
Build a Precision DualOutput Power Supply An inexpensive, adustablo. dual-output supply thats packed with reatures
The Light-Beam Communicator Talk on a beam of light with this justrfor-fun profect

Product Reviews
Product Reviews
Canon L1 Camoorder, Yamaha
Canon L1 Camcorder, Yamaha
AMFU Steros Tines, Heatid
anto
 PLEASE PRINT BELOW:

FOR FASTER SERVICE CALL TODAY
1-800-827-0383
(7:30AM-8:30PM)
EASTERN STANDARD TIME

EXPERIMENTING WITH

 ADC FOR

 ADC FOR YOUR PC

 YOUR PC}

Build our low-cost data-capture system and let your PC measure temperature, displacement, and other quantities.

IN PREVIOUS ARTICLES. WE INTROduced several general-purpose analog and digital I/O systems for the PC. (See "Experimenting With PC-Based Test Equipment" in May, June, and July of 1991.) The first installment described a test instrument for measuring capacitance; the second described a digital R/C meter. Both devices interfaced to the PC via a standard parallel port. The third installment described a simple PC expansion card, the PC 10 , that adds 24 digital I/O lines by means of an 8255 Parallel Input/ Output (PIO) device, the standard in the PC architecture.

In this article, we'll build a very low cost analog-to-digital converter (ADC) interface that allows you to measure temperature, displacement, audio signals, and any other $0-5$ volt analog signal. Our ADC builds off the PC IO: By adding an amplifier and ADC circuit, and some simple BASIC software, you can capture and display data and log it to your PC at a rate of 1000 (or more, de-
pending on the speed of your PC) data points per second.

This article shows you how to use the ADC to build an accurate temperature sensor, but it's easy to modify the circuit to accept other types of analog input devices.

Circuit theory

As shown in the block diagram of Fig. 1, the circuit consists of two functional blocks: a signal conditioner and an A/D converter. The signal conditioner is a variable-gain amplifier with an adjustable DC offset that allows you to calibrate the circuit for a variety of sensors. To understand why calibration is necessary, let's look at the IC that does the actual analog-to-digital conversion, a standard eight-bit device called the ADC0804. Unlike a traditional voltmeter, the $\mathrm{ADC0804}$ responds to AC voltage changes very quickly, in fact at a rate greater than 1000 per second. The ADC0804 converts each sample to digital form, after

JAMES J. BARBARELLO

which a computer may read the digital outputs for display or subsequent analysis.

The ADC0804 accepts an ana\log input of $0-5$ volts DC and converts it to a binary number between 0 and 255 . With a maximum range of 5 volts, and 256 steps between 0 and 5 , resolution is $5 / 256=0.0195$ volts, or almost 20 millivolts. So for any analog input voltage between 0.0000 and 0.0195 , the ADCO 04 will produce a binary $0(00000000)$; for any voltage between 0.0195 and 0.0390 , a binary 1 (00000001), and so on.

Twenty millivolts may seem like more than enough resolution, but what if you wanted to measure a signal with a maximum value of 40 millivolts? You'd only be able to distinguish two values in the given range. That's where the signal-conditioning portion

FIG. 1-BLOCK DIAGRAM shows the two major sections of the circuit, an amplifier and the ADC proper.
of the circuit comes in. By amplifying the signal so that it has an effective range close to the maximum range of the $I C$, we can break it down into much finer increments, and then let software scale it back to the appropriate value.

The DC offset portion of the signal conditioner lets us cancel any steady-state DC voltage and measure only the change in the DC voltage. That's required for the temperature sensor probe, which is built around the basecollector junction of a standard 2N2222 transistor. More on that in a moment.

The circuit

Referring to the schematic diagram shown in Fig. 2, IC1 is a
standard 1458 (dual 741) opamp. One op-amp (ICl-a) amplifies the input voltage by the ratio $-\mathrm{R} 3 / \mathrm{R6}$. With the values shown, that's a voltage gain of -10 . Resistor R8 ensures minimum DC offset from ICl-a. The second opamp (ICl-b) also functions as an amplifier, but in this case, voltage gain is $-(\mathrm{R} 5+\mathrm{R} 11) / \mathrm{R} 7$, where R11 is a 15 -turn, 10 K potentiometer that allows the gain to be adjusted between values of -1 and -2 . Like R8, R9 ensures minimum DC offset from ICl-b. The two inversions in the opamps result in a non-inverted output signal.

The voltage divider consisting of R2 and R12 allows insertion of a DC offset voltage of $0-+2.5$ volts DC. This can offset any
positive quiescent DC voltage from an input device.

The ADC is IC2; it is configured for a free-running mode that samples the input signal (pin 6) continuously. To ensure that the A/D is initialized properly, the software drives pins $3(\overline{\mathrm{WR}})$ and 5 (INTR) low momentarily on startup. The eight digital outputs (IC2 pins 12-18) drive the PIO directly, by way of P1.

A pair of 9 -volt batteries supplies power for the op-amps; the host PC supplies +5 -volt power for the voltage-divider circuit and IC2 via pin 25 of P1. Doing so ensures a more stable reference voltage than if the batteries were used. Of course, you're free to use a dual-polarity power supply in place of the batteries.

Temperature sensing

A standard 2N2222 transistor can readily serve as a $\$ 0.20$ temperature sensor. Referring to Fig. 3-a, note that the emitter and base of Q1 are shorted together. That connection provides a di-ode-the base/collector junction. When power is applied across the junction, we would expect a constant drop of about 0.7 volts across it. The term about is important here, because the actual drop depends on the temperature of the junction.

FIG. 2-COMPLETE SCHEMATIC shows the two gain stages (IC1-a, IC1-b) and the A/D
converter (IC2).

PARTS LIST

All resistors are $1 / 4$-watt, 5%, unless otherwise noted.
R1-22,000 ohms
R2-1000 ohms
R3- 1 megohm
R4, R5, R7, R9, R10-10,000 ohms
R6, R8- 100,000 ohms
R11-R13-10,000 ohms, 15-turn
potentiometer

Capacitors

C1-150 pF, ceramic disk (any value between $150-330 \mathrm{pF}$ OK)
$\mathrm{C} 2-0.1 \mu \mathrm{~F}$, ceramic disk

Semiconductors

IC1-5558 or 1458 dual op-amp, 8 pin DIP
IC2-ADC0804 or ADC0803 8-bit
A/D converter
Q1-2N2222 or PN2222 general purpose transistor
Other components
B1, B2- 9 -volt battery
J1-miniature ($1 / 8$-inch) phono jack
P1-DB-25 male connector
Miscellaneous: 24-gauge stranded wire, perforated construction board, 9 -volt battery clips, housing for probe, shielded cable.
Note: The complete PC 10 Board (with PC board, and all components) is available for $\$ 39.95$ (part \#PCIO). The ADC0804 and a calibrated PN2222A temperature sensor transistor are available for $\$ 8.00$ (part \#ADC). Software, including compiled and source code versions with continuous and interval sampling and data logging/listing is available for $\$ 8.00$ (part \#ADCS). Specify part numbers and send check or Money Order to JJ Barbarello, 817 Tennent Road, Manalapan, NJ 07726. The author will be glad to answer any questions, but they must be accompanied by a self-addressed stamped return envelope.

a

b
FIG. 3-DRIVE THE ADC with a tempera-ture-sensing transistor (a) or a calibration potentiometer (b).

FIG. 4-THE AUTHOR'S PROTOTYPE was built on several pieces of scrap perforated construction board.

Silicon transistors used in this way have a temperature coefficient of about $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. That is, at $0^{\circ} \mathrm{C}$, the drop would be about 0.6 volt. As the temperature increases, the drop decreases. At $100^{\circ} \mathrm{C}$ the drop will be about 0.4 volt. Although every transistor has a slightly different temperature coefficient, all transistors vary linearly with temperature. So by calibrating for the particular transistor used, it's possible to obtain an accurate yet lowcost temperature sensor.

Construction

Assembly is not critical; you can build the circuit on perforated construction board as shown in Fig. 4. We recommend using sockets for the IC's.

To connect to the PC IO board, connect eleven one-foot lengths of wire to the appropriate points on IC2, and the other ends to the corresponding pins of P1, a standard DB-25 male connector.

Next, build the temperature probe. Use either a 2 N 2222 A (metal case) or PN2222A (plastic case) and a length of shielded cable. Twist the base and emitter leads together, and solder them to the center conductor of the cable. Connect the collector to the shield. To avoid shorts, cover the leads near the transistor with heat-shrink tubing. Mount the transistor in a cylindrical case (a hollowed-out ballpoint pen body, for example), making sure the case can withstand the temperature range you will be measuring. Fill the probe with silicone or epoxy. Then attach a miniature phono plug to the free end of the cable, making sure that the center conductor goes to the tip and the shield to the ring.

The software

The QuickBASIC program that reads the voltage output of the circuit and converts it to a temperature is shown in Listing 1 ; note that line numbers are included for reference only. (The software is also available on the RE-BBS, 516-293-2283, $1200 / 2400$, 8N1, as a file called PCADMATE.LST.) The program requires several constants to work. Rather than store that information in the QB file, which would require recompiling every time we recalibrate, we store it in a sequential data file, TEMP.DAT, which contains the values we need, each separated by a comma. First comes the decimal I/O port address of the PC I/O card (described in July), followed by the voltage at the low temperature, the low temperature, the voltage at the high temperature. and the high temperature. (Voltages should be specified in volts and temperatures in ${ }^{\circ} \mathrm{C}$.)

For example, if those values were $640,4.1,0,0$, and 100 , TEST.DAT would contain

640, 4.1, 0, 0, 100
followed by a carriage return and line feed. The file can be created with any word processor; just remember to save it in ASCII or text format, not the word processor's native format.

Lines $2-4$ of the program open TEMP.DAT, read the values, close the file, and then set up the 8255 on the PC IO card so that lines $1-16$ are inputs, and 17-22 are outputs.

Lines 5-8 format the screen for a pleasing look.

Lines 9-17 are the real meat of the program, the measuring and display loop. Line 10 pulses the wRITE line low to obtain a reading. Line 11 then retrieves that reading into variable X . The program converts that number into a voltage (V) between 0 and 5.0. Next, line 12 calculates the Centigrade (cent) and Fahrenheit (faren) temperature values. Then lines 13-15 format and display the values. Line 16 pauses before the next sample is taken, and line 17 checks whether the Escape key has been pressed. If so, the program ends; otherwise, execution loops back to line 10 .

Calibration

First create the data file (TEMP.DAT) with nominal values for port address, voltages, and temperatures ($640,4.1,0,0$, 100); we'll fine-tune those values momentarily. Then run the program to initialize the PC IO card.

Next, connect the ADC circuit to the PC IO card, plug the probe into Jl , and place the tip of the probe against a piece of ice. Using a digital voltmeter on a low range, measure the voltage across the tip and ring of the plug. Record the temperature $\left(0^{\circ} \mathrm{C}\right)$ and the resultant voltage.

Pour some boiling water in a styrofoam cup, place the probe in the water, and repeat the process, recording both temperature $\left(100^{\circ} \mathrm{C}\right)$ and voltage. Use the two voltage values to determine the temperature coefficient of your probe. For instance, if the $0^{\circ} \mathrm{C}$ reading were 552 mV and the $100^{\circ} \mathrm{C}$ reading were 342 mV , the temperature coefficient would be $(0.342-0.552) /(100)=$ $-2.1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.

Prepare a 10 K potentiometer as shown in Fig. 3-b. At this point. the ADC board should be connected to the PC IO, the 9 -volt batteries (or other power source) should be connected, and the BASIC program should be running. Connect a DVM across Jl , set the calibration potentiometer so the value on the DVM equals the high value taken earlier, and adjust R12 for 0.000 volts, as shown on the PC's screen. Then set the calibration potentiometer so the value on the DVM equals the low value, and adjust R11 for a value (as shown on the screen) between 4.0 and 4.5 volts. The actual value doesn't matter, just the difference between the high and low values.

Check the high reading setting again to make sure it is still 0.0 volts, and recalibrate if necessary. Go back and forth between the two readings several times.

Now enter the correct values into TEMP.DAT. Make sure the file is stored in the same subdirectory as the program.

Now you're ready to use the probe. Just place it against the item to be measured, and hold it there until you get a steady tem-

LISTING 1

```
REM***************************************
REM** ADCTEMP.BAS - V910629 *
REM** ADCO804 A/D IC & 2N2222 Temp Probe *
REM*******************************************
1 CLS : DEFINT A, X: DEF SEG = 64
2 OPEN "TEMP.DAT" FOR INPUT AS 1
INPUT #1, add, lowvolt, lowval, hivolt, hival
4 CLOSE #1: OUT ADD + 3, 146
REM**************** SET UP SCREEN ************************
5 LOCATE 1, 23: PRINT "PCTEMP TEMPERATURE MEASURING SYSTEM"
6 LOCATE 2, 1: PRINT STRINGS(79, 220): LOCATE 8, 32: PRINT
STRINGS (16, 220)
7 FOR 1 = 9 TO 16: LOCATE 1, 32: PRINT CHRS(219); SPACES(14);
CHRS(219): NEXT
8 LOCATE 12, 33: PRINT STRINGS(14, 220): LOCATE 16, 33: PRINT
STRINGS(14, 220)
REM****************** SAMPLING LOOP *************************
9 again:
10 OUT add + 2, 0: OUT add + 2, 1: REM: Take A Sample
11 }x=\operatorname{INP}(\mathrm{ add) : v = x * 5 / 255
12 cent=hival - (v * (hival - lowval) / lowvolt):faren = 1.8 *
INT(cent) + 32
13 LOCATE 4, 33: PRINT USING "Output = #.## v"; v
14 LOCATE 10, 37: PRINT USING "###"; cent; : PRINT CHRS(248); "C"
15 LOCATE 14, 37: PRINT USING "###.#"; faren; : PRINT CHRS(248):
"F"
16 FOR i = 1 TO 500: NEXT
17 IF INKEYS = CHRS(27) THEN END ELSE GOTO again
```


LISTING 2

IF CENT <10.5 THEN OUT ADD $+1,1$ IF CENT >10.5 THEN OUT ADD $+1,0$
where V_{Z} is the voltage drop at $0^{\circ} \mathrm{C}, \mathrm{T}$ is the temperature in ${ }^{\circ} \mathrm{C}$, and TC is the temperature coefficient.

LISTING 3

4 CLOSE \#1: OUT ADD + 3, 146: OFEN "READING.DAT" FOR OUTPUT AS 1 16 FOR $1=1$ TO 500: NEXT: OUTPUT \#1, V 17 IF INKEYS $=\operatorname{CHRS}(27)$ THEN CLOSE: END ELSE GOTO again

LISTING 4

OPEN "READING.DAT" FOR INPUT AS 1 DO WHILE NOT EOF(1)
INPUT \#1, V: PRINT V
LOOP
CLOSE: END

Alternate ranging

It is possible to adjust the circuitry and the computer program to any temperature range you desire. Just recalibrate the circuit and adjust the constants in TEMP.DAT. For example, assume you want to measure temperatures between $-35^{\circ} \mathrm{F}$ and $+104^{\circ} \mathrm{F}$.
First, determine the temperature coefficient as described above. Next, convert the desired temperature range from ${ }^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$ using the formula $\mathrm{C}=5 / 9 \times$ ($\mathrm{F}-32$). In our example, $+104^{\circ} \mathrm{F}$ is $40^{\circ} \mathrm{C}$, and $-35^{\circ} \mathrm{F}$ is $-37.2^{\circ} \mathrm{C}$. Then calculate the drop at those two temperatures using the following formula.

$$
V_{D}=V_{z}+(T \times T C)
$$

At $40^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{D}}=600 \mathrm{mV}+\left(40^{\circ} \mathrm{C}\right.$ $\left.\times-2.1 \mathrm{mV} /{ }^{\circ} \mathrm{C}\right)=600 \mathrm{mV}$ $-84 \mathrm{mV}=516 \mathrm{mV}$.
At $-37.2^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{D}}=600 \mathrm{mV}+$ $\left(-35^{\circ} \mathrm{C} \times-2.1^{\circ} \mathrm{mV} /{ }^{\circ} \mathrm{C}\right)=600$ $\mathrm{mV}+78.17 \mathrm{mV}=678.17 \mathrm{mV}$.

Now plug in the calibration potentiometer (shown in Fig, 3-b), set it to the high-temperature drop (516 mV), and adjust R12 until the output is 0.000 . Then set the potentiometer to the lowtemperature drop (678 mV), and adjust R11 for a value between four and five volts. Last, insert the temperature values and the high-temperature output voltage into the data file. Now the circuit is fully calibrated for the new temperature range.

Software modifications

You could use the probe as a low-temperature detector. Connect a sensitive 5 -volt relay to pins $9(+)$ and 23 (gnd) of P1. If the temperature goes below a continued on page 82

1991

ANNUAL INDEX

Eleztrinnies: Volume 62

1991 Annual Index Radio-Electronics Volume 62

 Abbreviations: (ARE) Ask R-E; (AUD) Audio Update; (C) Construction; (CC) Computer Connections; (CD) Computer Digest; (D) Department; (DB) Drawing Board; (ER) Equipment Reports; (HH) Hardware Hacker;(LTR) Letters; (VN) Video News; (WN) What's News
1991 Retrospective (Holtzman)(CC)
360-Degree Potentometer (ARE) Nov 12
874X Programmer (Eady)(C)

Dec 84 360-Degree Potentometer (ARE) Nov 12

A

Adobe
PostScript Cartridge (Holtzman)(CC)
Type Manager (Hotzman)(CC)
Mar 84
Feb 78
Type Manager (Hoitzman)(CC)
Atternators as Stepp
(Lancaster)(HH)
Sep 67,Dec 69
Amateur Radio License
FCC Approves No-Code (Stone)
Apr 27
American Heritage Electronic Dictionary,
Houghton Miffin's (Holtzman)(CC)
Jul 77
Amiga, The Friendly (Holtzman)(CC)
Amplifier Design, Efficiency and (Kein)(AU)
Analog Scopes (ONeal)
Aug 81

Analog-to-Digital and
Digital-to-Analog Converters (Bigelow)
Nov 43

Analyst 2 Data Line Monitor,
Data Controls (ER)
Jul 58

Analyzer, THD (Keidel)(C)
Feb 20
Answering a Letter of Protest:
Transter Functions Part II (Kiein)(AUD)
Mar 74 Apple Disk (ARE) Artisoft's LANtastic Two-Station AE-2

Ethernet Starter Kit (Holtzman)(CC)
Feb 12

ASK R-E (D)
Apr 12,May 12,(LET)Aug 14, Mar 12
2, (LeT)Aug 14, Jun 8
Aug B,Sep 12,0ct 8 B,Sep 12, Oct 8
Nov 12,Dec 12
Association Book Resources (Lancaster)(HH) Jun 65 Asymetrix Corp's ToolBook 1.0 (Holtzman)(CC)

Feb 78 Audible Lobic Probe

PC Board for (Grossblat) (DB)

AUDIO (See also AUDIO UPDATE)

Amplitiers: Do They Sound
Different? (Klein)(AUD)

AUDIO UPDATE (Klein)(D) Jan 80,Mar 74,Apr 80 (LET) Oct 14, May 72, Jun 72 Jul 74,Aug 80, Sep 74 Oct 82 ,Nov 86 ,Dec 78
Audio Amplitiers: Do They Sound Different?
Boston Sound, The: Part I
Part Il
Apr 80,(LET)Oct 14
Part li
Jan 80
Distortion Primer, A:
Part 1
Part 2
Jun 72
Part 2
Etriciency and Amplifier Design
Future PHoducts
Future Products
Japan: The Evolution of an Audio Colossus
OEM, Custon Models,
OEM, Custom Models, and Private Labels

Past, Present, and Future	
of Tape Cartridges, The	Aug 80
Reader Letters: Some Bouquets and Brickbats	Oct 82
Transter Functions Pat Il:	Mar 74
Answering a Letter of Protest	Automotive Charging Systems (Grossblati)(DB)
Aec 75	

B

Bakerizing and Laminating (Lancaster)(HH) Sep 67 Battery

Sate Charging (ARE)
Technology (Deevey) (C) Joc 53
Tool, Build the (Eady)(C)
Jun 8,Oct 14

Binaural Basics (Sunier) Oct 51,(LET)Dec 14
Blinking Blocks (ARE)
Nov 12
Boston Sound, The:
Part I (Klein) (AUD)
Part It (Klein) (AUD)
Jan 80
Buckyballs and C60 (Lancaster)(HH) Aug 69
BUILD (See also CONSTRUCTION)
the Battery Tool (Eady)(C)
Dec 53
the Microanalyzer (Miga) (C) Sep 47
a Negative lon Generator (Carist) (C) Jan 41, Feb 55
A-Es Call-Alert (Kreuter \& Plant) (C)
Your Own Electrocardiograph (Roberts) Jul 31,Aug 44 Your Own Macintosh-Compatible
Computer(Colby)(C) Jan 31,(LET)May 14
Buyer's Guide to Digital Storage (LET)Apr 13,(LET)Aug 14
Oscilloscopes (Prentiss)
Nov 31

C

Cable
Cable
ID (ARE)
Dec 12
Tracer (ARE)
May 12
Call-Alert,
Build R-Es (Kreuter \& Plant)(C) Oct 60
Caller ID (Lancaster)(HH) Aug 69
Case and Enclosure
Nov 78
Changing Face of Satellite TV (Nov 1990) (LET)Feb 17
Cheap Visible Lasers, and More (Lancaster)(HH) Feb 71
Chips That Remember:
Mar 63
Cold Fusion Update, and More (Lancaster)(HH) Jan 68 Color Bar Generator (Gould)(C) Jul 41,(LET)Oct 14
Color Monitors (ARE)
Dec 12
Communications Networks, Personal (Newell) May 61

Compass, Electronic (Carist)(C) Jun 39

COMPUTER (See also COMPUTER CONNECTIONS
$874 \times$ Programmer (Eady)(C)
Computer (Coiby)(C) Jan 31,(LET)May 14 Data Controls Analyst 2 (LET)Apr 13,(LET)Aug 14
Data Controls Analyst 2
Digital Mutimetec PC-Based.
Digial Multimetect PC.-Based
Feb 20
DRAM Tester (Hutt) C)
Test Equipment (Barbarello)(C) May 57,Jun 48, Jul 53
Logic Analyzer (Robidoux \& Dmitroca)(C) Jul 47
PCto-TV Converter (Stevens)(C)
PC-to-TV Converter (Stevens) (C)
RS-232 Terminal Monitor (Aurrich)(C) Aug 50

Corel Draw (Holtzman)(CC)
Current-Transformer Ideas (Lancaster)(HH)
Curve Fitting Fuzzy Data (Lancaster)(HH)
Feb 78 Dec 69 Oct 72

D

Data Controls Analyst 2
Data Line Monitor (ER)
DC-to-AC Inverter
Feb 20
Line Power From 12 Volts (Cuthbert)(C)
Apr 43
Digital Multimeter
Fluke
Model 12
Model 45 Dual Display Multimeter
Model 79
Global Specialties PCI-DMM
PC-Based Multimeter
Digital
Signal Processing
Sinew Word of DSP, The (Bernard)
Sinewave Synthesizer (
Storage Oscilloscopes.
A Buyer's Guide to (Prentiss)
Tachometer (ARE)
-to-Analog and Analog-to-Digital Converters (Bigelow)
Distortion Primer, A: Part I (Klein)(AUD)
Part II (Klein)(AUD)
Doppler-Ultrasound Heart Monitor (Jaffe)(C)
DRAM Tester (Hufft)(C)
Mar 77
$7, O c t ~$
85
ssblatt)(D)
Jun 74,Aug 77,Oct
DRAWING BOARD (Grossblatt)
Jun
Automotive Charging Systems
Every Test Bench Needs
a Good Power Supply
a Good Power Supply
Let's Add an Audible Indicator
to Our Logic Probe
Let's Build an Oscilloscope!
PC Board For Our Audible Logic Probe
Simple but Effective Test Equipment
Driving Inductive Loads, and More (Lancaster)(HH)
DSP, The New World of (Bernard)
Dual-Digital Pontentiometer (Lancaster)(HH)
Sep 67

Dual Display Multimeter, Fluke Model 45 (ER)
Mar 22

E

E-Field Machines (Lancaster)(HH)	Oct 72
Efficiency and Amplifier	
Design (Klein)(AUD)	Dec 78
Electric	
Dog Tag Contest, and More (Lancaster)(HH) Motor Resources (Lancaster) (HH)	Nov 78 Feb 71
Electrical Quantities	
One Volt = ?	Feb 63
Electrocardiograph, Build Your Own (Roberts)(C)	Jul 31,Aug 44
Electromagnetic Theory,	
An Intuitive Look at (Rice) Aug	Aug 65,Sep 57 Nov 64,Dec 60

Electronic
Compass (Caristi)(C) Jun 39,(LET)Sep 16
Fuse (Petruzellis)(C) Dec 63
Tuning Diodes, Let's Look at (Lancaster)(HH) Jun 65
Electronics Workbench,
Interactive Image Technologies' (Hottzman)(CC) JuI 77 ElF Gaussmeter Magnetic Field Meter (Metz)(C) Apr 33
Energy Consumption Monitor (Brule)(C) Dec 31
EQUIPMENT REPORTS (D) Jan 12,Feb 20,Mar 22 Apr 18,Jun 22,Jul 20 Aug 22,Sep 18,Oct 22 Nov 22,Dec 22
Data Controls Analyst 2 Data Line Monitor Fluke
Model 12 Digital Multimeter
Dec 22
Model 45 Dual Display Multimete
Model 79 DMM
Global Specialties
PCI-DMM PC-Based Multimeter
Mar 22 Protolab

Nov 22

Hewlett Packard 54601A
Portable Digital Oscilloscope
Apr 18
HS25 Heavy Duty "Stick" Style Multimeter
R.L. Drake R-8 World Band Shortwave Receiver Sep 18

Sharp Model PC-E500 Pocket Computer
Units + Conversion Factors Unit Conversion Software

Aug 22
very Test Bench Needs
a Good Power Supply (Grossblatt)(DB)
Mar 77
Evolution of Standards, The (Holtzman)(CC)
Apr 85
Experimenting With PC-Based Test
Equipment (Barbarello)(C) May 57, Jun 48,Jul 53
Experiments in Voice Recognition (Cooper)(C) Apr 49

Ferroelectric ICs:
Chips That Remember (Byers)
Mar 63
FirstApps, hDC Computer Corp (Holtzman)(CC) Feb 78 Flashlight Battery Supplies (Lancaster)(HH) Oct 72 Fluke
Model 12 Digital Multimeter (ER) \quad Dec 22
Model 45 Dual Display Multimeter (ER)
Model 79 DMM (ER)
Mar 22
Flyback Squeal (ARE)
Jul 20
FM
Stereo Standards (Lancaster)(HH)
Dec 69 Transmitter, Simple (Melton)(C)

Nov 8
Focused X-Ray Breakthrough,
and More (Lancaster)(HH)
Aug 69
Fractals and Chaos Update (Lancaster)(HH)
Dec 69
Frequency Counter, Universal,
Turn Your PC Into a (Grasty \& Schulz)(C) Feb 37
Friendly Amiga, The (Holtzman)(CC)
Frugalvision Image Capture Board
Video Capture on the Cheap! (Toner)(C) Dec 37
Fuel Cells (Hubscher) Jun 61,(LET)Dec 14
Future Products (Klein)(AUD) Sep 74

Global Specialties
PCI-DMM PC-Based Multimeter (ER) Nov 22
Protolab (ER)
H
Ham Radio
Call-Alert, Build R-E's (Kreuter \& Plant)(C) Oct 60 HARDWARE HACKER (Lancaster)(D) Jan 68,Feb 71 Apr 71, May 65, Jun 65 Jul 68,Aug 69,Sep 67 Oct 72,Nov 78, Dec 69
Cheap Visible Lasers, and More Oct 72,Nov 78, Dec 69
Feb 71

Cold Fusion Update, and More

Curve Fitting Fuzzy Data
Driving Inductive Loads, and More
Electric Dog Tag Contest, and More
Focused X-Ray Breakthrough, and More
Let's Look at Electronic Tuning Diodes
New Hackable Project ideas, Apr 71, (LETJul 8
Standards Resource Information, and More (LET Dec 69
Toner Cartridge Reloading,
More On May 65,(LET)Aug 14
Understanding Transiorms, and More
$\begin{array}{ll}\text { Heart Monitor, Doppler-Ultrasound (Jaffe)(C) } & \text { Nov } 49 \\ \text { Hercules Graphics Station Card (Holtzman)(CC) } & \text { May } 77\end{array}$
Hewlett Packard 54601A
Portable Digital Oscilloscope (ER)
Apr 18
High-Energy Resources (Lancaster)(HH)
History in the Making (Holtzman)(CC)
Home Intercom System,
Use Your Telephones as a (Polimene)(C)
Oct 94

Home-Energy Monitoring (Lancaster)(HH)
Hot Troubleshooting Tips (Phelps)
May 44

Houghton Mitflin's
American Heritage Dictionary (Holtzman)(CC) Jul 77
HS25 Heavy Duty "Stick" Style Multimeter (ER) Jun 22

BM

Compatibility (ARE)
XGA Adapter (Holtzman)(CC)
Dec 12
Induction Motor Speed Controls (Lancaster)(HH)
Infrared People Detectors (Lancaster)(HH)
"In-Package" Battery Testers (Lancaster)(HH) Inside
Marketing Information for the
Audio Consumer (Klein)(AUD)
Switching Power Supplies (Trietley)
Intel 8052 (ARE)
May 49

Interactive Image Technologies
Electronics Workbench (Holtzman)(CC)
intercom. Home System
intercom, Home System
Intuitive Look At Electromagnetic Theory,
An (Rice) Aug 65,Sep 57,Oct 53,Nov 64,Dec 60

Keyboard Tracer (ARE)
May 12

Laser Printer, Poor Man's (Renton)(C)	Apr 17
LED Troubles (ARE)	Sep 12
Let's	
Add an Audible Indicator to Our	
Logic Probe (Grossblatt)(DB)	Jun 74
Build an Oscilloscope! (Grossblatt)(DB)	Oct 85
Look at Electronic Tuning Diodes (Lancaster)(HH) Jun 65	
LETTERS (D)	Feb 17,Mar 16 May 14,Jun 74 Aug 14,Sep 16 Nov 16,Dec 14
Line Power From 12 Volts (Cuthbert)(C)	Apr 43
Logic Analyzer	
(Robidoux \& Dmitroca)(C)	Jun 31,Jul 47
The Micro Monitor (Cooke)(C)	Oct 67,Nov 67
Logic Probe	
A Simple, Inexpensive (Grossblatt)(HH)	May 75
Audible PC Board For Our (Grossblatt)(DB	B) Aug 77
Let's Add an Audible Indicator to (Grossblat	att)(DB) Jun 74
Long-Playing Recorder, A (ARE)	Mar 12

M

Machine-Shop Resources (Lancaster)(HH)
Apr 71
Macintosh-Compatible Computer, Build Your Own (Colby)(C) Jan 31,(LET)May 14

Negative Ion Generator,
Build a (Caristi)(C)
Jan 41,Feb 55
New Beginning for this Column,
A (Holtzman)(CC)
Jul 77
New Hackable Project ideas
and More (Lancaster)(HH) Apr 71
NEW LIT (D) \quad Jan 28,Feb 31,Apr 26
Sep 26,Oct 27,Nov 28,Dec 29
NEW PRODUCTS (D)
Jan 18, Feb 22, Mar 24
Apr 22,May 22, Jun 24
Jul 22,Aug 24, Sep 22
New Wave in the
Computer Industry, A (Holtzman)(CC) Nov 92
New World of DSP. The (Bernard) Jun 43

No Color Titles (ARE) Mar 12
NTSC-To-RGB Converter (Oct 1990) (LET)Feb 17

0

OEM, Custorn Models.
and Private Labels (Klein)(AUD) Nov 86
One Volt = ? (Nasser) Feb 63

Oscilloscope
Hewlett Packard 54601A Portable Digital (ER) Apr 18
Let's Build an (Grossblatt)(DB)
Oscilloscopes
Analog (O'Neal)
Putting a New Scope to Work (Ramirez) Nov 43

P

Parametric Amplification (Lancaster)(HH)
Jun 65
Past, Present, and Future of
Tape Cartridges. The (Klein)(AUD) Aug 80 Patent Alternatives (Lancaster)(HH)

Jan 68
PC Board For Our
Audible Logic Probe (Grossblatt)(DB) Aug 77

PC-Based

Multimeter, Global Specialties PCI-DMM (ER) Nov 22
Test Equipment, Experimenting With (Barbarello)(C)

May 57,Jun 48,Jul 53
PC-to-TV Converter (Stevens)(C)
Oct 33
Personal Communications Networks (Newell)
May 61
Photovoltaic Panel Bargains (Lancaster)(HH)
Nov 78

Power

Electronic Resources (Lancaster)(HH)
Jul 68
Inverter, DC-to-AC
Line Power From 12 Volts (Cuthbert)(C)
Apr 43
Supply, Every Test Bench
Needs a Good (Grossblatr)(DB)
Mar 77
Preventing Modem Dropouts (Lancaster)(HH) Jun 65 Print-Screen Indicator (ARE) May 12,Sep 12,(LET)Dec 14 Programmable Logic Resources (Lancaster)(HH) Sep 67 Programmer, 874X (Eady)(C)

Nov 71
Protolab, Global Specialties (ER)
Jan 12
Pulse Mate (Plant)(C)
Putting a New Scope to Work (Ramirez)
Jan 50

R

ADIO
Call-Alert, Build R-E's (Kreuter \& Plant)(C)
Oct 60
R.L. Drake R-8 World Band

R-E's EZ. Shortwave Receivor,
Tune in the World With (Kreuter)(C)
Sep 18
L. Drake R-8 World Band Shortwan Jan 56 Zeader Letters: Some
Bouquets and Brickbats (Klein)(AUD) Oct 82
zobot, Stepper-Motor (Eady)(C)
Apr 63
3S-232 Terminal/Monitor (Avritch)(C)
Aug 50

S

Safe Charging (ARE)	un 8,Oct
Janta Claus Machines (Lancaster)(HH)	May 6
pe, Putting a New One to Work (Ramirez)) Jan 50
Serniconductor Memories (Bigelow)	Mar 6
Serial-Bus AnalyzerRS-232 Terminal Monitor (Avritch)(C)	
jervicing	
Hot Troubleshooting Tips (Phelos) Putting a New Scope to Work (Ram	Feb
Sharp Model PC-E500 Pocket Computer (ER)) Aug 2
ihortwave Receiver R-Es EZ, Tune In the World With (Kreuter)(C) R.L. Drake R-8 World Band (ER)	(C) $\quad \operatorname{Jan} 56$
Simple but Effective Test Equipment (Grossblatt)(DB) FM Transmitter (Melton)(C) Inexpensive Logic Probe, A (Grossblatt)(HH)	$\begin{array}{ll} \text { DB) } & \text { Apr } 78 \\ \text { H) } & \text { Nav } 84 \\ \text { Hay } 75 \end{array}$
亏̇inewave	
Generator (ARE) Synthesizer, Digital (Swiff)(C)	
Single-Channel Filter (ARE)	Aug
Slower Recording (ARE)	Oct
jMPTE Time Code Standards (Lancaster)(Nov
SOFTWARE	
Adobe	
PostScript Cartridge (Holtzman)(CC) Type Manager (Holtzman) (CC)	Mar 84 Feb 78
American Heritage Electronic Dictionary.	
Crosstalk for Windows, DCA (Holtzman)(CC)	Feb 7
Corel Draw (Holtzman)(CC)	eb
Electronics Workbench,	
FirstApps, hDC Computer Corp. (Holtzman)(C Microgratx Designer 2.0 (Holtzman)(CC)	1)(CC) Feb 78 Jul 77
Microsott	
MS-DOS 5.0 (Holtzman) (CC)	
Windows 3.0 (Holtzman) (CC) Jan	Jan 84,Feb 78
Windows 3.1 (Hoitzman)(CC)	Jun 80

He's listening to a radio station in China.

MoreFonts, MicroLogic (Holtzman)(CC) Pizazz Plus,
Application Techniques (Holtzman)(CC) Feb 78
Software Solution (ARE)
Feb 78
ToolBook 1.0, Asymetrix Corp's (Holtzman)(CC) Feb 78
Ventura Publisher
Windows Edition (Holtzman)(CC) Feb 78
Windows, Microsolt
Pains (and Pleasures) (Holtzman)(CC) Feb 78
3.0, Microsoft (Holtzman)(CC) Jan 84, Feb 78
3.1 (Hoitzman)(CC) Fob 78
Jun 80
Watch (Hoitzman)(CC)
Units + Conversion Factors
Unit Conversion Software (ER)
Solar Energy Breakthrough (Lancaster)(HH)
Oct 22
Solid State Tesla Coil (Bylund)(C)
Some Predictions for PC's to Come
During the Next Decade (Holtzman),(CC)
Speaker Cables,
Wir "Beastie" Improve Your Audio? (Honeycutt) Feb 50
Speaker Protoctor (Vaught)(C) Aug 55,(LET)Dec 14
Spectrum Analyzer
(Doberstein \& Cardone)(C) Aug 33,Sep 40 Standards

Resource Information,
and More (Lancaster) (HH)
Dec 69
The Evolution of (Holtzman)(CC)
Apr 85
May 77
Video (Holizman)(CC)
Apr 63
Switching Power Supplies, Inside (Trietley) May 49,Apr 57

$\begin{aligned} & \text { ape Cartridges, The Past, } \\ & \text { Present, and Future of (Klein)(AUD) } \end{aligned}$	Aug 80
Technical Literature (Lancaster)(HH) Apr 71,	Jan 68,Feb 71 Apr 71,Aug 69,Oct 71
Telecommunications	
Personal Communications Networks (Newell)	I) May 61
TELEPHONE	
Build R-Es Call-Alert (Kreuter \& Plant)(C)	Oct 60
Caller ID (Lancaster)(HH)	Aug 69
Music on Hold (Hausman)(C)	Nov 58
Phone Sentry The (Cooper)(C)	Sep 60
Telephone Information (Lancaster)(HH)	Aug 69
Use Your Telephones as a	
Home intercom System (Polimene)(C) Video Telephone (Colby) (C)	May 44 Apr 45
Terminal/Monitor, RS-232 (Avritch)(C)	Aug 50
Tesla	
Coil, Solid State (Bytund)(C)	Sep 33
Coils (Lancaster)(HH)	Oct 72
TEST EQUIPMENT	
Analog Scopes (ONeal)	Nov 43
Audio Sweep/Marker	
Generator (Wannamaker)(C)	Feb 43,Mar 55
Build the Microanalyzer (Miga) (C)	Sep 47
Color Bar Generator (Gould)(C)	Jul 41
Data Controls' Analyst 2	
Data Line Monitor (ER)	Feb 20
Digital Sinewave Synthesizer (Swift)(C)	Oct 43
Digital Storage Oscilloscopes,	
A Buyer's Guide to (Prentiss) DRAM Tester (Huftt)(C)	Nov 31 May 33
Electronic Fuse (Petruzellis)(C)	May 33 Dec 63
Electronic Fuse (Petruzellis)(C)	Dec 63

Experimenting With PC-Based Experimenting With PC-Based
Test Equipment (Barbarello)(C) Test Equipment (Barbarello)(C) May 57,Jun 48,Jul 53 Fluke

Model 12 Digital Multimeter (ER) Model 45 Dual Display Multimeter (ER)

Dec 22 Model 79 DMM (ER)

Mar 22
Jul 20
Global Specialties
PCI-DMM PC-Based Multimeter (ER)
Nov 22
Protolab (ER)
Hewlett Packard 54601A
Hewlett Packard 54601A
Portable Digital Oscilloscope (ER) Apr 18 Hot Troubleshooting Tips (Phelps) Let's Build an Osciloscope! (Grossblatt)(DB) Oct 85 Logic Analyzer (Robidoux \& Dmitroca) (C) Jun 31, Jul 47 Micro Monitor (Cooke)(C) Oct 67,Nov 67 Pulse Mate (Plant)(C) Putting a New Scope to Work (Ramirez)

Simple but Effective
Test Equipment (Grossblatt)(DB)
Apr 78

Spectrum Analyzer
(Doberstein \& Cardone)(C) Aug 33,Sep 40
THD Analyzer (Keidel) (C) Dec 47
Turn Your PC Into a Universal Frequency
Counter (Grasty \& Schulz)(C)
THD Analyzer (Keidel)(C) Dec 47
Toner Cartridge Reloading,
More On (Lancaster)(HF)

May 65

ToolBook 1.0, Asymetrix Corp's (Holtzman)(CC) Feb 78
Total Harmonic Distortion (ARE) Dec 12

Transter Functions Part II:

Answering a Letter of Protest (Klein)(AUD) Mar 74
Transmitter, Simple FM (Melton)(C) Nov 84
Troubleshooting Tips, Hot (Phelps) Feb 61
Tune in the World With R-Es EZ
Shortwave Receiver (Kreuter)(C) Jan S6,(LET)Oct 14
Turn Your PC Into a Universal
Frequency Counter (Grasty \& Schutz)(C) Feb 37,Mar 43

U

Understanding
Decibels (Lancaster)(HH)
Jan 68
Transforms, and More (Lancaster)(HH) Jul 68
Units + Conversion Factors
Unit Conversion Software (ER)
Oct 22
Universal Frequency Counter,
Turn Your PC Into a (Grasty \& Schulz)(C) Feb 37,Mar 43 Unusual Newsletters (Lancaster)(HH)
Use Your Telephones as a Home
Intercom System (Polimene)(C) May 44,(LET)Nov 16

Voltage

Doubler (Hubscher)(C)
Aug 61
-to-Frequency Converters (Trietioy)
Jun 54
W
WHAT'S NEWS (D)
Jan 4,Feb 4,Mar 4
Apr 4,May 4,Jun 4
Jul 4,Aug 4,Sep 4
Wavelet Breakthoughs (Lancaster)(HH) Oct 4,Nov 5, Dec 4

Wholesale Surplus Sources (Lancaster)(HH) Jan 68
Wig-Wag Circuit? (ARE)
Will "Beastie" Speaker Cables
Improve Your Audio? (Honeycutl) Feb 50
Wind-Speed Read (ARE) Apr 12 (ARE) Apr 12

Windows

Vindows	Feb 78
Pains (and Pleasures) (Hoitzman)(CC)	Jan 84, Feb 78
3.0, Mcrosoft (Holtzman)(CC)	Jun 80
3.1 (Holtzman)(CC)	Jun 80
Watch (Holtzman)(CC)	

SPEAKER MATE

continued from page 46
sure to wipe off the tip of your iron on a wet sponge immediately after melting the plastic. Transformer T1 should be mounted with its marker, if any, toward the input jack side.
The last step is installing all jumpers (J) and JUl; the JUl jumper is installed for phone-line powered applications, and left out for use with an external power source. So install JU1 for now, and we'll go into greater detail on it later. If a jumper runs close to existing circuitry, you might place some shrink tubing on the bare lead. The kit mentioned in the parts list includes some shrink tubing.

There are some options for the front-panel configuration. In the prototype, SPST toggle switch S1 is used as the answer switch and is mounted next to LED1, the "power on" indicator. Cut the leads long enough to reach the front panel without too much excess. Volume control R20 has its attached switch, S2, wired in series with the microphone element to provide a "mute" function. The mute setup works well because the low-impedance microphone circuit doesn't pick up interference when open. If the mute function is not needed, R20's switch can become the ANSWER Switch and you can eliminate toggle switch S1. However, the complete kit does include the toggle switch.

FOIL PATTERN for the Speaker-Mate.

In preparing the circuit board for the cabinet, leave the speaker leads long enough to attach the speaker on the top half of cabinet. We have found that a spare piece of perforated construction board makes an excellent drilling guide for making a neat speaker grille on top of the cabinet. Cutting out a notch on the cabinet rear for the modular telephone jack (J1) and drilling a $1 / 2$-inch hole for access to the microphone gain potentiometer completes the cabinet back.

Completion of the front panel is next. Figure 5 shows how we mounted the microphone. A $3 / 8$ inch inside-diameter rubber grommet was glued to the inside of the front panel behind the $3 / 8$ inch microphone opening. You can use either hot-melt glue or

FIG. 8-YOU MAY WANT TO ADD a ringer to the Speaker-Mate. The tone ringer chip (IC3) monitors the telephone line for a ring signal of 15 to $68 \mathrm{~Hz}, 40$ to 150 volts $A C$. Resistor R sets the warble and center frequency; with R at 150 K , the warble is approximately 10 Hz and the center frequency is 1250 Hz .

RTV silicone. Insert the microphone element (with leads attached) into the grommet so that it sits back just enough to not touch the front panel, but no more: a recessed element will give an echo sound we want to avoid. This step acoustically and mechanically decouples the microphone from the speaker output, yet gives some directional effect. It will be glued in such a position in the grommet in just a minute. Note that an electret microphone is polarity-sensitive; the pin that connects to the case of the microphone is ground.

Finish up by wiring R20 and its switch S2, LED1, and S1. We found that prewiring these components first makes assembly easier. The final step is to fit the panel into the enclosure and glue LED1, the microphone, and the speaker in place with RTV silicon, making sure that the electret element is positioned as mentioned before. Set the microphone gain potentiometer, R15. to about half way. Figure 6 shows the completed Speaker-Mate prototype.

Testing and use

For acoustical reasons, the proven approach to testing the unit is with the board mounted in a closed case. At an extreme setting of microphone gain, the microphone may pick up the speaker output. This extreme continued on page 83

VGA adapter for the Mac LC，computer monitors， flyback，shielding，and GPS navigation resources．

t seems I did miss an obvious source in our recent Tesla and High Energy Resources sidebar． This is the Tesla Society up in Colora－ do，who runs a great museum and now offers annual Tesla and nontradi－ tional energy conferences．Their High Energy Enterprises division has lots of books and videotapes．

These range the gamut from hard－ to－find and genuinely useful research materials on down（way on down） through bunches of＂Boy－a－whole－ flock－of－them－flew－over－that－time！＂ pseudoscience titles．

On the other hand，if you are into antigravity，the 1000 miles per gallon carburetors，Russian weather control conspiracies，Reed motors，all those pangalactic happy faces on Mars，or zero point scalar energy，these books and videos are definitely for you．This is most fascinating reading and watching，either way．

Actually，I＇ll freely admit that I firmly now believe in one trilateral conspir－ acy．That＇s the one involving the first， second，and third laws of ther－ modynamics．But that＇s just me．And if you want to prove me wrong，just show to me any simple and indepen－ dently verifiable experiment that any－ one can reliably duplicate．

Some more info on wavelets：The Wavelets book offered by Jones and Bartlett is at long last in print．And a major new tutorial just came out in the October 1991 IEEE－SP Signal Pro－ cessing magazine on pages 14－38．

Shields and shielding

These have been popular topics lately on our helpline，so perhaps it is time to go over some fundamentals． You can shield something electronic either to keep objectionable signals from getting out or getting in．For instance，on any light dimmer，you might want to suppress the horrible AM radio interference caused by a triac suddenly turning on．On a low－
level audio circuit，you might want to prevent power－line hum and noise from getting to you．

If you do know ahead of time that you＇re going to have interfering noise or signals present，one very powerful technique is to change over to fully balanced circuits．They sense only the differences between their inputs， rather than any absolute values with respect to ground．Thus，any common mode interfering signals that bounce both inputs up and down together will automatically be re－ jected．Or at least suppressed．Sev－ eral fancy audio studios have even gone to totally balanced power lines to dramatically reduce their hum and noise problems．

There are usually two paths that interference can travel．One is with radiated energy，which can propagate directly through space to emit from or interact with your circuit．The other is conducted energy，which enters along your power connectors and in－ put or output cables．

Since separate tricks are needed to deal with any radiated or con－ ducted energy，step one is finding out which path is the one you will want to deal with first．

The radiated energy interference will usually have two components． They are that＂ E ＂or electric field， which largely concerns itself with in－ duced voltages and that＂ H ＂or magnetic field，which creates induc－ ed currents．Once again，you have to

NEED HELP？

Phone or write your Hardware Hacker questions directly to：

Don Lancaster

 Synergetics Box 809 Thatcher，AZ 85552 （602）428－4073know which field component you are going to suppress before you pick a proper method．

Any old conductor should usually block an E field．One obvious hacker choice that works well are boxes built up out of double－sided printed－circuit board．See Fig． 1.

But there are gotchas．At lower fre－ quencies，there is the lack of a well－ developed skin effect，which causes an E field to penetrate deeper into a conductor．Thus，thicker shields are needed to suppress lower frequen－ cies．Say 20 mils for an AM broad－ cast band use or 80 mils for the high ultrasonic frequencies．

A shield can also act as a shorted turn to any nearby inductor，possibly lowering the Q and detuning．A slot or other continuity break can some－ times help this problem．

While some small shield holes are often tolerable，any poor contacts are definitely not．A continuous solder bead or else lots and lots of individual screws may be needed for really high shielding effectiveness．

It＇s very important that unintended currents don＇t ever run through any shields．Unwanted signal drops can often end up in series with your input signals，making things much worse rather than better．Which is also why you should keep all your digital and analog grounds separate．

The H fields can be blocked by use of any strongly magnetic materials． These materials are said to have a very high permeability．The simplest magnetic shield is a piece of scrap sheet steel from the air conditioning shop or trailer hitch works．But things get messy in a hurry if you need lots of magnetic attenuation．

Those special and fancy shielding materials are optimum only in certain thicknesses and over a specific fre－ quency range．Worse yet，some of these cannot be cut or drilled without a complex reannealing process．And

FIG. 1-SIMPLE E-FIELD SHIELDS for ra-dio-frequency hacker projects are easily built up from pieces of double-sided printed circuit board stock.
too strong of a magnetic field could saturate a shield, making it useless.

To be effective, a magnetic shield should completely surround the volume it is protecting.

A good free booklet on all of the fundamentals of magnetic shielding is available from Amuneal, while other sources of custom shield materials now include Advance Magnetics and Magnetic Shield Corp.

Conducted interference can be best eliminated by some blocking filter. These filters should freely pass

GPS RESOURCES

Ashtech

390 Potrero Avenue
Sunnyvale, CA 94086
(800) 229-2400

CIRCLE 301 ON FREE INFORMATION CARD

Bancomm

6541 Via del Oro
San Jose, CA 95119
(408) 578-4161

CIRCLE 302 ON FREE INFORMATION CARD

GPS World

P.O. Box 10460

Eugene, OR 97440
(503) 343-1200

CIRCLE 303 ON FREE INFORMATION CARD
Magellan Systems Corp.
960 Overland Court
San Dimas, CA 91773
(818) 358-2363

CIRCLE 304 ON FREE INFORMATION CARD

Magnavox

2829 Maricopa Street
Torrance, CA 90503
(800) 421-5864

CIRCLE 305 ON FREE INFORMATION CARD

NASA Tech Briefs

41 East 42nd Street Ste. 921
New York, NY 10017
(212) 490-3999

CIRCLE 306 ON FREE INFORMATION CARD

Rockwell Commercial GPS

P.O. Box 568842

Dallas, TX 75356
(214) 996-5863

CIRCLE 307 ON FREE INFORMATION CARD

Speleonics

P.O. Box 5283

Bloomington, IN 47407
(812) 339-7305

CIRCLE 308 ON FREE INFORMATION CARD

TI/GPS Products

P.O. Box 869305 , M/S 8449

Plano, TX 75086
(214) 575-4057

CIRCLE 309 ON FREE INFORMATION CARD

Trimble Navigation

585 North Mary Avenue
Sunnyvale, CA 94086
(800) TRI-MBLE

CIRCLE 310 ON FREE INFORMATION CARD

FIG. 2-FERRITE BEAD interference suppressors are simply slipped onto any conductor. The ferrite beads behave as lossy and broadband high-frequency transformers. Multiple turns can also be used.
ference suppressor. As Fig. 2 shows us, you simply hang them on a wire or else run a turn or two through them. Ferrite beads act as a broadband high-frequency lossy transformer. There are various materials and sizes. again depending on frequency. Sources of ferrite beads include FairRite. FerriShield, Ferroxcube. Intermark, and Siemens.
One very little known ferrite bead gotcha: Do not ever cast a ferrite bead in epoxy or otherwise constrain it so it cannot move. The beads must be able to physically change their size slightly, or else the performance will sharply degrade.
Two trade journals that involve themselves with shields and shielding are Electronics Test and Compliance Engineering.

Monitor fundamentals

We sure do get a lot of computermonitor and TV compatibility calls. Let's start off with the obvious: The performance and bandwidth of an ordinary TV or VCR using composite NTSC video is severely limited. That is why all the computer folks went to special RGB monitors in the first place. And that is why nearly all the computers are totally incompatible with ordinary television gear.
Yes, there now are all sorts of ways you can use your computer for real video editing or to record computer screens on a VCR. But note that there is no way 1 know of that you can record plain old 80 -column text as composite video on your VCR. Or display it on any unmodified TV set.
How does a monitor work? Inside is a cathode ray "picture tube" with one or more guns that squirt lots of electrons at a phosphor screen. At

H YOKE
CURRENT
FLYBACK VOLTAGE
HORIZONTAL
SWITCH
DAMPER
DIODE

+V SUPPLY

	sink	source	sink	source	

FIG. 3-THE RECURRENT FLYBACK SWEEP on television sets and computer monitor displays is extremely energy efficient, but will only work over a VERY limited range of horizontal scan rates.
any instant, only one single dot appears on the screen. That dot gets moved around by the scanning process, and will get brightened and dimmed by rapidly setting its intensity at a video modulation rate.
To build up the illusion of a full picture, that scanned dot is moved rapidly and horizontally from left to right and more slowly vertically from the top to bottom. The decay characteristics of the phosphors selected and your human persistence of vision combine to create the illusion of a total picture.
Television uses what is known as an interlaced scan. To build up a TV frame, the dot starts at the upper left
and rapidly scans to the right and slowly on downward, painting every second scan line. When it gets to the bottom of this field, it goes back to the top and picks up what it missed. painting a second field. The normal field rate is usually 60 hertz for black and white or 59.94 hertz for color.

The NTSC (National Television Standards Committee) standard uses 512 lines per frame, or 262.5 lines per field. That leads to standard horizontal scan rates of 15750 Hertz for black and white or 15735 Hertz for color. The two numbers end up slightly different to get all the rest of those color magic numbers to properly drop in place.

DIGITAL VIDEO STABILIZER
ELIMINATES ALL VIDEO COPYGUARDS

While watching rental movies, you will notice annoying periodic color darkening, color shift, unwanted lines. flashing or jagged edges. This is caused by the copy protection jamming signals embedded in the video tape, such as Macrovision copy protection. THE DIGITAL VIDEO STABIUZER: RXII COMPLETELY ELIMINATES ALL COPY PROTECTIONS AND JAM. MING SIGNALS AND BRINGS YOU CRYSTAL CLEAR PICTURES.
WARNING THE DIGITAL VIDEO STA. BLIIZERISINTENDEDFOR PRIVATE HOME USE ONLY. IT IS NOT IN. TENDED TO COPY RENT. AL MOVIES OR COPYRIGHTED VIDEO TAPES THAT MAY CONSTIUTE COPYRIGHT \mathbb{N} FRINGEMENT.

Easy to use and a snap to install

- State-of-the-art Microchip technology
Compatible to all types of VCRs and Ns
- The best and most exciting Video Stabilizer in the market
- Light weight (8 ounces) and compact ($1 \times 3.5 \times 5^{\prime \prime}$)
- Uses a standard 9 Volt battery (last 1 2 years)
- Fast UPS delivery Air shipping avail able
- UNCONDITIONAL 30 day money back guarantee
- 1 year warranty
(Dealers Welcome)
FREE 20P Catalog

To Order: $\$ 59.95$ ea $+\$ 4$ for $p \& h$
Visa, MC, COD Mon-Fri: 96 EST
1-800-445-9285 ext. 63801
SCO Electronics Inc. Dept. 63801
581 W. MERRICK RD. VALLEY STREAM, NY 11580
CIRCLE 191 ON FREE INFORMATION CARD

CABLE TV DESCRAMBLERS
 How You Can Save Money on Cable Rental Fees
 Bullet Proof

 BEST Super Tri-Bi Auto

Var. Gain Adjustment $\$ 119.95 .585$ Jerrold Super Tri-Bi - $\$ 109.95 .579$ Scientific Atlanta - $\$ 109$ - $\quad \$ 79$ Pioneer ….............. $\$ 109$ _... $\$ 79$ Panasonic TZPC145- $\$ 99.95$. 579 Stargate Corverter_ $\$ 95$ \$69 Digital Video Stabilizer. 559.95 - $\$ 29$ Wireless Video Sender. $\$ 59.95$. 549.95

30 Day Money Back Guarantee FREE 20 page Catalog
Visa, M/C, COD or send money order to: U.S. Cable TV Inc. Dept. 53801 4100 N. Powerline Rd., Bldg. F-4 Pompano Beach, FL 33073
1-800-772-6244 ext. 53801 For Our Record

1. the underaigned, do hereby declare under penalty of perjury that all products purchased, now and in the future, will only be used on Cable TV systems with proper authorization from Iocal ofticials or cable company ofticials in accood ance with all applicable federal and state low. FEDERAL AND VARIOUS STATE LAWS PROVIDE FOR SUBSTANTIAL CRIMINAL AND CIVIL PENALTIES FOR UNAUTHORIZED USE

Date:
Signed: \qquad
No Florida Sales

US Cable'll Beat Anyone's Price Advertised in this Magazine!
Digital Video Stabilizer. 559.559

Actel

955 East Arques Avenue
Sunnyvale, CA 94086
(408) 739-1010

CIRCLE 311 ON FREE INFORMATION CARD
AD-Vance Magnetics
625 Monroe Street
Rochester, IN 46975
(219) 223-3158

CIRCLE 312 ON FREE INFORMATION CARD

American Colloid Co

1500 West Shore Drive
Arlington Heights, IL 60004
(708) 392-4600

CIRCLE 313 ON FREE INFORMATION CARD

Amuneal

4737 Darrah Street
Philadelphia, PA 19124
(215) 535-3000

CIRCLE 314 ON FREE INFORMATION CARD

Aremco

PO Box 429
Ossining, NY 10562
(914) 762-0685

CIRCLE 315 ON FREE INFORMATION CARD

Fair-Rite

PO Box J
Wallkill, NY 12589
(914) 895-2055

CIRCLE 316 ON FREE INFORMATION CARD

NAMES AND NUMBERS

FerriShield

350 Fifth Avenue, Ste 7505
New York, NY 10118
(212) 268-4020

CIRCLE 317 ON FREE INFORMATION CARD

Ferroxcube

2001 West Blue Heron Blvd
Riviera Beach, FL 33404
(407) $881-3200$

CIRCLE 318 ON FREE INFORMATION CARD

Steve Hansen

35 Windsor Drive
Amherst, NH 03031
(603) 429-0948

CIRCLE 319 ON FREE INFORMATION CARD

Intermark

One Pen Plaza, Ste 4526
New York, NY 10119
(212) 629-3620

CIRCLE 320 ON FREE INFORMATION CARD

Jones \& Bartlett

20 Park Plaza
Boston, MA 02116
(617) 482-3900

CIRCLE 321 ON FREE INFORMATION CARD

Magnetic Shield Corp
 740 North Thomas Drive
 Bensenville, IL 60106
 (708) 766-7800
 CIRCLE 322 ON FREE INFORMATION CARD

Management Roundtable

1050 Commonwealth Ave, Ste 301
Boston, MA 02215
(800) 338-2223

CIRCLE 323 ON FREE INFORMATION CARD

Mini-Circuits

PO Box 350166
Brooklyn, NY 11235
(718) 934-4500

CIRCLE 324 ON FREE INFORMATION CARD

Murata-Erie
 2200 Lake Park Drive

Smyrna, GA 30080
(404) 436-1300

CIRCLE 325 ON FREE INFORMATION CARD

Siemens

2191 Laurelwood Road
Santa Clara, CA 95054
(408) 980-4500

CIRCLE 326 ON FREE INFORMATION CARD

Synergetics
 Box 809-RE

Thatcher, AZ 85552
(602) 428-4073

CIRCLE 327 ON FREE INFORMATION CARD

Tesla Society/HE Enterprises

PO Box 5636
Security, CO 80931
(719) 475-0918

CIRCLE 328 ON FREE INFORMATION CARD

Interlaced scan is used by NTSC to minimize flicker. But interlaced scan is totally unsuitable for data displays, especially small text! The reason is that interlace works only if successive lines are more or less the same. This is clearly not the case between dot lines of finer text. Thus, most computer screens demand a noninterlaced display where each field is complete and identical.

Most computer monitors also will use a 59.94 - or a 60 -hertz vertical scan rate. Less than that and you'll end up with too much flicker. If you try to lengthen the phosphor persistence you may end up with "comets" for traveling balls.

The horizontal scan rate is decided by how many horizontal lines you are using per field. As you increase the number of lines in a display, the horizontal scan rate goes up. Scan rates from 22 to 45 kilohertz are typical, with some exotic displays going much higher.

Now for the kicker: Most monitors
will work only over a VERY limited range of horizontal scan frequencies! Unless you go to some very fancy multi-sync techniques.

FIG. 4-MULTI-SYNCING MONITORS change their sweep values to try and match an input horizontal scanning rate. But once selected, they still operate only over a very limited frequency range.

Flyback deflection

Why can't someone just build a monitor that accepts an ultra-wide range of horizontal scan frequencies and be done with it? The answer to that has much to do with both energy conservation and the way things have been done in the past.
A set of coils known as a deflection yoke normally goes on the neck of the display tube. These are plain old coils that will move your electron beam to wherever you want it to go. Normally, the horizontal yoke is where all the action is, since it does things several hundred times faster than the vertical one.

Since several kilowatts or more of deflection power are involved in the horizontal deflection of a larger color display, sneaky tricks will have to be played to reuse and recycle all of the energy involved. These sneaky tricks go by the name of recurrent flyback deflection, and are shown to you in Fig. 3

The basic rule of any inductor is
that...

$$
\mathrm{e}=\mathrm{L} \Delta \mathrm{i} / \Delta \mathrm{t}
$$

Let's rearrange things a tad...

$$
\Delta i / \Delta t=e / L
$$

Now $\Delta \mathrm{i}$ is the change in current and Δt is the change in time, so $\Delta \mathrm{i} / \Delta \mathrm{t}$ will be a linear current ramp whose rate of change should equal your supply voltage divided by the inductance of your horizontal yoke.

Say that the switch in Fig. 3 is now open and has been that way for a long time. There is no current in the yoke, and no deflection. The spot will still be in the middle of the line.

Now, close the switch, but just for around one-half of the live scan time. What happens? We now apply a positive voltage to an inductor, and start building a linear current ramp. That current ramp in the deflection yoke creates one linearly increasing magnetic field, and the spot moves to the right. When you get to the right side of the screen, you'll have bunches of energy stored in the horizontal yoke's magnetic field.

What are you going to do with it? If you just burn it up as heat, you'll end up with bad reliability and high power consumption. Besides needing far tougher electronics. Instead, let's work smarter instead of harder.

Open your switch. Your equivalent circuit now consists of a yoke coil in series with the flyback capacitor. A standard and high-Q series-resonant circuit. But one that started out with zero volts on your capacitor and a strong current through the coil.

At this time, all of the energy is in the coil and none is in the capacitor. Let the circuit resonate for a while, exactly like any other series-resonant circuit. In one quarter of a cycle, the capacitor will be charged up to a large positive voltage, often in the $800-1200$ volt range. At the peak. the current will be zero, and the inductor will be "empty" and field-free.

You have now transferred all of the magnetic energy that was in the yoke into electrical energy stored in the flyback capacitor! And done so with very little loss.

Let the circuit continue to resonate. The current will reverse in direction, and energy will start transferring back into the inductor. Note that the current is now going in the opposite direction.

Let the circuit resonance continue

FIG. 5-THE MACINTOSH LC definitely can NOT be used with a NTSC monitor. But this simple cable and jumpering lets you use it with most VGA color monitors. The configuration jumper from pin 7 to pin 10 selects VGA scan rates and standards.
until the capacitor gets to zero volts. You will now have placed all of the original magnetic energy right back into the deflection yoke, with one very important difference: Since the current is going in the opposite direction, you're now at the maximum left
spot position, compared to the maximum right that you were half a resonance cycle ago. And, again, you have done this with very little loss.

This process is known as a flyback, and the retrace interval is called the flyback time. The beam is turned off during the flyback time so the retrace is invisible.

Let the circuit resonance try and continue. The flyback capacitor will try and go negative but, at that time, a damper diode will turn itself on. Your circuit now consists once again of a coil connected between a positive voltage and ground. It will once again start generating a positive current ramp. Only this time, it starts from a negative initial current. Thus, your sweep starts linearly moving from the left to the center. As you move on towards the center of your scan line, the yoke energy gets sent back into the positive supply.
When you get to the center of the screen, you once again close your switch to repeat everything for the next cycle. The damper diode shuts down just as soon as you cross cen-

THE MONEY MAKING OPPORTUNITY OF THE 1990'S
IF you are able to work with common small hand tools, and are familiar with basic electronics (i.e. able to use voltmeter, understand DC electronics).
IF you possess average mechanical ablity, and have a VCR on which to practice and learn. . . .then we can teach YOU VCR maintenance and repair!
FACT: up to 90% of ALL VCR malfunctions are due to simple MECHANICAL or ELECTRO-MECHANICAL breakdowns!
FACT: over 77 million VCRs in use today nationwide! Average VCR needs service or repair every 12 to 18 months!
Viejo's 400 PAGE TRAINING MANUAL (over 500 photos and illustrations) and AWARD-WINNING VIDEO TRAINING TAPE reveals the SECRETS of VCR maintenance and repair-"real world" information that is NOT available elsewhere!
Also includes all the info you'll need regarding the BUSINESS-SIDE of running a successful service operation! FREE INFORMATION

CALL TOLL-FREE 1-800-537-0589
Or write to: Viejo Publications inc. 5329 Fountain Ave.
Los Angeles, CA 90029 Dept. RE

No costly school. No commuting to class. The Original Home-Study course prepares you for the "FCC Commercial Radiotelephone License"This valuablelicense is your professional "ticket" to thousands of exciting jobs in Communications, RadioTV, Microwave, Maritime, Radar, Avionics and more...even start your own business! You don't need a college degree to qualify. but you do need an FCC License.
No Need to Quit Your Job or Go To School This proven course is easy, fast and low cost! GUARANTEED PASS-You get your FCC License or money refunded. Send for FREE facts now. MAIL COUPON TODAY! COMmãnd PRODUCTIOMS
FCC LICENSE TRAINING, Dept. 90
P.O. Box 2824, San Francisco, CA 94126

1 Please rush FREE details immediately!
I name
$\begin{array}{ll}\text { ADDRESS } \\ \text { CITY } & \text { STATE __IP } \\ \text { ZIP }\end{array}$
ter screen. Automatically.
Once again: Close your switch to move from center to right. Transfer the coil energy to a flyback capacitor. Resonate half a cycle and transfer the flyback capacitor energy back to the coil inverting its sign and putting you far left. Turn on the damping diode to move from left to center. And repeat the process once each scan line.

Several details l've omitted: That flyback pulse also gets sensed and routed to a current step-up transformer called a flyback transformer. The flyback transformer steals a minor part of the energy and uses it to create the high voltage DC supply that is needed by the display tube. Other windings can be used for blanking, horizontal phase comparison, and boosted supply voltages elsewhere in the TV or monitor. And games have to be played to keep any uncenter DC bias out of the horizontal yoke. But regardless of these details, the basic concept of recycling your deflection energy remains.

This very elegant, highly tested, and ultra conservative flyback scheme inherently works best only at one horizontal scan frequency. And that is why you can't normally get a monitor that can accept any old horizontal rate.

Yes, there are multi-sync monitors. These usually work by measuring the intended input scan frequency and then switching in one or more flyback capacitors and adjusting the supply voltage accordingly. Figure 4 shows one multisync scheme. Once switched, a multisync monitor is a narrowband system just like any other flyback-driven circuit.

VGA for the Mac LC

The Macintosh LC computer was designed for use with the Mac color monitors to the Mac color standards. Since these can be expensive, lots of hackers are often on the lookout for lower-cost substitutes. But note that you definitely can not use an NTSC color monitor because of the higher scan rates on the LC.

And also do note that you should never buy a substitute monitor without making certain it works and is good enoligh for your uses.

Happily, there is a hidden "secret" provision on the Mac LC that lets you change your LC output so it is VGA.
compatible. Quality VGA monitors are often available much cheaper in far wider selections than are "real" Mac monitors.

The secret jumper that changes the LC scan rates for VGA compatibility is shown in Fig. 5.

GPS Nav resources

From time to time we've looked at the Navicube concept right here in Hardware Hacker. The Navicube is a magic $\$ 5$ cube 3 inches on a side which always knows where it is and which way it is pointing. Several recent developments that should ultimately make the Navicube possible include low-cost accelerometers, advances in fiber-optic gyros, and the ongoing GPS navigation system.

GPS is short for Global Positioning Satellites, a military navigation system that has recently seen several dramatic improvements in price, reliability, and availability. I've tried to gather together some GPS info for you as this month's resource sidebar.

The system consists of a flock of roving satellites, any five or six of which should be overhead at any given time. The satellites broadcast a series of low microwave-frequency radio signals. By intercepting and comparing the signals from several overhead satellites, you can extract your current absolute position and do so to around a fifty-foot accuracy. Your speed, acceleration, and current time can also be determined to surprisingly high accuracies. Within two inches per second even.

And by shifting to a differential scheme from any one known and fixed point, you can improve your accuracy to a fraction of an inch.

Amazingly, the antennas needed are no big deal. They can easily fit inside a small shoebox. Unlike video satellites, the GPS antennas need a wide beamwidth, a narrow-frequency bandwidth, plus a pseudorandom modulation which works acceptably well with lower signal-to-noise ratios. The antennas do require line-of-sight operation, so they have to be used outdoors, on a rooftop, or on the top of a vehicle or boat.

Since the reception electronics are incredibly complex, it is unlikely that you would want to try and build up your own GPS receivers by using discrete components.

Thankfully, sophisticated chip sets are now becoming readily available from Rockwell, Magellan, and others. Their initial pricing is in the $\$ 500$ range. But it is reasonable to expect Japanese GPS chips within a year or two for under $\$ 35$. So now is the time to start on your GPS hacks.

The leading trade journal in the field is called, of all things, GPS World. It is free to qualified subscribers. An interesting hacker newsletter that deals with navigation and communications of interest to cavers is Frank Reid's great Speleonics. Some other GPS info appears from time to time in NASA Tech Briefs. Several other sources of GPS gear include Ashtech, Bancomm, Texas Instruments, and Trimble Navigation. Trimble has a nice GPS intro book available. It's called GPS-A guide to the next utility.

New tech lit

From Actel, a new databook on Field Programmable Gate Arrays. And from Mini-Circuits a new RF/IF Signal Processing Guide on higher frequency mixers, splitters, amplifiers, transformers, and such. Their broadband amplifiers cost around a dollar or so each.

A free update on our Santa Claus machine technology is now titled an Insiders Guide to Rapid Prototyping. and is available from Management Roundtable. These folks also put on annual conferences.

A new quarterly hacker newsletter on lower-cost vacuum projects and techniques is now available through Steve Hansen. It's called The Bell Jar.

Free samples of Liquisorb, a lowcost cornstarch collodial absorbent, are available from American Colloid Company. Since these sample packets dramatically swell up in the presence of liquid water, one obvious use is as a low-cost flood alarm.

And through Aremco, a Materials Catalog M12 that includes a wide variety of high-temperature ceramic materials, including machinable and pourable versions.

For the fundamentals of digital integrated circuits, be sure to check out my classic CMOS Cookbook and TTL Cookbook. You can also reach me via GEnie PSRT (800) 638-9636, where you'll find lots of resource stuff not available elsewhere.

AUDIO UPDATE

Reader questions: Real and imagined, serious and silly

HARAY KLD.्राN

After several decades of answering readers' hi-fi questions for various electronics and audio publications, one can get a little nostalgic. I look back with fondness to the days when I had all the answers-or at least thought I did-and was pleased to provide them to curious readers. Today I certainly don't have all the answers, and occasionally I don't even understand the questions. In any case, herewith is a selection of updated Q's and A's that, if not my greatest hits, at least reflect some of the interesting concerns of the audio public in the last decade.

Subliminal Satanism

I keep hearing that some heavymetal rock bands put subliminal Satanic messages on their albums. The messages are supposedly in the form of words recorded in reverse at the ends of certain cuts. What effect do these messages have on listeners? L.B.

Everetts, N.C.

Mostly it causes them to write silly questions to magazine columnists. The term "subliminal" is usually applied to stimuli that are outside the range of conscious perception but are nevertheless said to reach the brain and affect thinking. The purported danger in such a technique is that the messages bypass conscious evaluation and cause their hearers (or viewers) to uncritically buy products. vote for certain candidates... or worship Satan. Since there appears to be no legitimate research indicating any effect at all from subliminal motivational messages, good or bad, I wouldn't worry about it... unless, of course. you experience sudden inexplicable urges to buy large quantities of toothpaste, to vote for Jesse Helms, or join your local coven after a long evening of heavy-metal head banging.

My comments also apply to "subliminal" self-help tapes. A recent study by the National Academy of

Sciences concluded that such tapes "have no proven value." That seems logical, considering that any messages recorded below the threshold of hearing would necessarily be buried in normal tape noise.

Record and tape wear

I hope you can settle a bet for me. I maintain that, unlike LP records, cassettes don't wear out. My friend insists that they both wear with use. And what's the situation with CD longevity? I've read some troubling reports lately.
J.S.

Evanston, IL
They both wear, but the effects are different for tapes and discs. When vinyl discs begin to wear, noise and distortion are added to the signal. Worn tapes, on the other hand, tend to suffer signal losses. There are momentary "dropouts" that reflect damage to the tape's oxide coating caused by friction against the player's heads, capstan, and guides. There may also be a partial erasure of the high frequencies brought about by an accumulation of residual magnetism in those same metal parts. Periodic cleaning and demagnetizing of the player help minimize the damage.

Over time, there may be a marked increase in cassette wow and flutter. Assuming that the player is okay, and that the tape or the cassette shell mechanism has not been damaged through overheating on a car's dashboard, the fault is probably caused by an overly tight winding inside the cassette. The tape pack can be restored to its normal looseness by repeatedly, but gently, slapping the cassette face down against a semihard surface such as a magazine or book. Squeal can sometimes be helped by a very small amount of silicone lubricant applied in the areas where the tape hubs meet the shell. but most of the time it reflects a problem (sometimes brought about by aging) in the composition of the tape coating.

Recently questions have been raised about CD longevity, with claims that CD's suffer from "laser rot" over time. The reasons given for the self-destructive tendencies of CD's have been varied, but the claim is that today's CD's have, at best, a very limited life span.

I think that such predictions should be taken with a sack of salt, considering their original sources are the same "underground" audio publications that disparaged CD's from the outset.
I spoke to a gentleman in charge of preservation research at the Library of Congress, and he says he knows of no evidence that supports the view that normal, properly manufactured CD's will spontaneously "fail" over time. All of which is not to say that some CD's haven't had playback problems because of mishandling or manufacturing defects.

Undriven drivers

There's a hi-fi dealer in my area who features what he calls "Single Speaker Demonstrations. "He claims that it was discovered in England that the presence of other non-playing speaker systems in a listening room can affect the sound produced by the playing speakers. Does the removal of non-playing speakers really help a listener evaluate different systems more accurately?
J.S.

Los Angeles, CA
I don't think so, particularly since it would certainly prevent a fast A/B comparison between systems. It's probable that there is a slight measurable acoustic effect in a showroom produced by stacks of unconnected speaker systems. Theoretically, acoustic-suspension speakers would function as Helmholtz absorbers at the frequency of their system resonances, and vented systems would do the same at their port resonances. In either case, the suck-outs would occur in the same low-frequency areas where
most standing-wave problems occur and conceivably might moderate the effects. But given the very large ($10-20 \mathrm{~dB}$) bass-response irregularities found in most rooms-including dealer demo rooms-it seems unlikely that even the most golden of ears could isolate a positive or negative effect produced by the presence of a dozen or so undriven speaker systems.

Incidentally, I understand that some lunatic fringe audiophiles even advocate removing telephones, clocks, and watches from listening rooms in the belief that they somehow resonate destructively with the music. As with so many other superstitious beliefs, this one also has in it a small-very small-grain of truth.

If you were to feed an audio oscillator through your system and sweep it slowly at high volume from, say, 40 to 200 Hz , you would find that small and large objects in the room vibrate slightly at their specific resonant frequencies. But with music there is usually not enough sustained
acoustic energy at any one frequency to produce audible resonances. However, it is not a good idea to place small art objects on top of your speakers as there might be enough coupled vibration to cause them to dance sympathetically to whatever tune is playing.

Sonic shatter

I'm curious about the old Memorex wine glass shattering commercials. Exactly what technology was involved? Was it anything like Caruso's vocal trick?

M.H.

Mendenhall, MS

Like all good wine glasses, the goblets used in the commercial were both rigid and relatively fragile. To calibrate the goblets, each was placed directly in front of a loudspeaker driven by an audio oscillator. The oscillator was swept slowly through the range of approximately 700 to 850 Hz , which covered the resonant frequencies of the glasses used by Memorex. During the frequency
sweep, a finger resting lightly on the rim of the goblet could easily detect the increase in vibration at the goblet's specific resonant frequency. That was marked on the crystal goblet for future reference.

At glass-breaking time, a tape recording (on a Memorex cassette) was made of the celebrity singer producing a sustained note at the previously determined critical frequency. When the cassette tape was played back very loudly through a speaker, the wine glass-which had an approximately $140-\mathrm{dB}$ sound field impinging on it-would react by flexing itself to pieces.

Given the above, it should be clear that shattering a glass by an unamplified voice is no easy trick. Not only does the singer have to produce an enormous sound pressure level, but also the frequency has to be within a hertz or so of the wine glass's specific-and unknown-resonant frequency. Perhaps in Caruso's day voices were stronger and crystal more fragile.

R-E

\qquad 										
 Math-nactavics										
nowricy					2e. avici $\$ 17.97$					
Г Z 500-8 3 -courr aLx. thantichate. it tit3s										
 s00-8 at-coantr nive. 										
	fabminctale. NY [1735									
	fabmingdale, ny 11733									
ONhi ".										
cmanixca puctécitions winc: Luynser strictir										
Tictamer	comirit maitins nockith									
 84, ais not cuanges sumas Finkot conage gum Git cuandreevens ascronatidinowtis Frapes matine men \qquad $*$ -and										
GxTget and matuat or cinculation ifloe terevetiose as wivese win!	Antar 									
	280.560			277.350						
a wompon neousbis omculanow 	34, 308			58,298						
2 thet himemern 	124.791			120.784						
 	279,653			179,082						
 	7,00)			7.642						
2. Totai vasmentiownencenem	185,602			185,724						
 contro	8,201			397						
	s5.247			90.279						
	200,160			277.350						

More on automotive voltage regulators.

ROBXRT GROSSBLATT

0nce again I have to apologize to everyone out there who's waiting for us to get back to the design of a digital scope. We won't be doing that until next time because I need this space to finish going through our discussion of generators, alternators, voltage regulators, and all the rest of the stuff you meet when you take a trip to the always amazing world of charging systems.

As I mentioned last time, I was amazed by the amount of interest in this and, as a certified member in good standing of the old car and bike freak club (with a particular emphasis on British stuff), my duty is clear.

We've already gone through the basics of the charging system and seen that there are really only two ways an alternator can be wired into a bike or car. One side of the field winding is tied to either the hot side of the battery (a pulled-up field), or to ground (a grounded field). Most British cars and bikes use a pulled-up field and you'll find a lot of American cars using a grounded field. I said this last time but it's really important so let me repeat it. Before you can build your own voltage regulator, you HAVE to know how your alternator is wired. Using the wrong regulator will destroy the regulator and probably trash the alternator as well.

The easiest way to tell what system is used in your car or bike is to use a multimeter. With the ignition turned on, but the engine not running, measure the voltage from the hot side of the battery to the terminal marked " F " on your existing regulator. If you get a reading between 12 and 13 volts (the battery voltage), your car is using a pulled-up field.

If you get a zero, or near-zero reading, you're probably looking at a grounded field. You can make sure by reading the voltage from the regulator's " F " terminal to ground. You should see the 12 - to 13 -volt battery
voltage there. If you don't see the battery voltage anywhere you either have a bad connection or you're measuring from the wrong terminals. Check the multimeter leads and, if that doesn't cure the problem, get out a flashlight and trace the wires. You absolutely have to know what you're dealing with before you add a voltage regulator!

Anyone who finds that they have a pulled-up field can stop reading right now and skip ahead a bit because the regulator we designed last month is exactly the one needed. If you've got a grounded-field alternator, there's still some work to do. The regulator we designed has to be modified before you can use it.

The easiest way to see the changes is to compare the original pulled-up field circuit (last month's Fig. 3) to the modified design for a grounded-field regulator shown in Fig. 1. One of the first things you should notice is that R7 and R8 are now in parallel. Electrically, there's no real reason for having those two resistors in parallel. The only reason I left them both there is to help make the similarity between the two circuits more evident. You can leave them wired in parallel or simply do the
arithmetic necessary to come up with an equivalent single-resistor replacement.

The major change to the circuit is that the alternator field connection is now made off the emitter of Q3 rather than the collector. All the changes in the circuit are aimed at varying the voltage at Q3's emitter. The Darlington pair made from Q 2 and Q3 is still controlled by the voltage at the collector of Q1 in exactly the same way as it is for the pulled-up field regulator. The positive feedback (supplied by C3 and R8) that speeds up the switching of the circuit from fully on to fully off now comes from Q3's emitter rather than its collector.

The reasons for the changes in the circuit are all based around the idea of being able to vary the output voltage. Since, in the case of a grounded field, the given is that one side of the field is tied to ground, the job of the regulator is to increase the output voltage at the " F " terminal when the control voltage at the base of Q1 falls below the point set by R10. The LED has been moved so it will monitor the field voltage and D1 has been moved so it can soak up any back-voltage generated when the alternator field collapses. You'll also see that the value of R7

FIG. 1-COMPARE THE ORIGINAL pulled-up field circuit (last month's Fig. 3) to the modified design for a grounded-field regulator shown here.

FCC LICENSE PREPARATION

The FCC has revised and updated the commercial license exam. The NEW EXAM covers updated marine and aviation rules and regulations, transistor and digital circuitry.
THE GENERAL RADIOTELEPHONE OPERATOR LICENSE - STUDY GUIDE contains vital information. VIDEO SEMINAR KITS ARE NOW AVAILABLE.

WPT PUBLICATIONS
979 Young Street, Suite E Woodburn, Oregon 97071

Phone (503) 981-5159 Dept. 50

HIGH POWER AUDIO AMPLIFIER CONSTRUCTION

BP277-Here's background and practical design information on high power audio amplifiers capable of 300 ± 400 watts r.m.s. You'll find MOSFET and bipolar output transistors in inverting and non-inverting circuits. To order your copy send $\$ 6.25$ plus $\$ 2.50$ for shipping in the U.S. to Electronic Technology Today Inc., P.O. Box 240, Massapequa Park, NY 11762-0240.

MIDI PROJECTS

BP182-MIDI interfacing enables any so equipped instruments, regardless of the manufacturer, to be easily connected together and used as a system with easy computer control of these music systems. Combine a computer and some MIDI instruments and you can have what is virtually a programmable orchestra. To order your copy send $\mathbf{\$ 6 . 9 5}$ plus $\$ 2.50$ for shipping in the U.S. to Electronic Technology Today Inc., P.0. Box 240, Massapequa Park, NY 11762-0240.

CIRCLE 181 ON FREE INFORMATION CARD
has been dropped to 100 ohms but, as I said earlier, you can replace it and R8 with a single resistor.

Before we take this any further, a word or two has to be said about C3. When the voltage on the output side of the regulator changes, some voltage is bled off through C3 and used to help speed up the action of the regulator. That is true both when the regulator is supplying current to the alternator field and when it's shutting the field current down as well. So, when the regulator is working, current will flow back and forth through C3.

Whenever you have that situation with an electrolytic, the right component to use is a non-polarized capaci-

FIG. 2-FOIL PATTERN for the groundedfield regulator.

FIG. 3-PARTS-PLACEMENT/WIRING DIAGRAM. Use at least 14-gauge wire for the three connections to the vehicle's electrical system.
tor. Telephone circuits use them all the time. If you can't find a non-polarized electrolytic of the proper value, a standard substitute is to use a pair of polarized capacitors wired front-toback in parallel. When I was building the circuit, I didn't have a non-polarized $22 \mu \mathrm{~F}$ capacitor around so, since I was in a hurry to get the circuit in my car, I just used a regular polarized
capacitor instead. Once the car was back on the road, I figured I'd be able to drive to the parts supplier, get the right component, and make the correct substitution.

That was several years ago and, even though l've made many trips to Capacitors-R-Us since then, I've never replaced the original polarized capacitor. I know it's the right thing to do
but l've never gotten around to it. The choice is yours.

The foil pattern for the groundedfield regulator is in Fig. 2, and the parts-placement/wiring diagram is shown in Fig. 3. If you have last month's column around, you'll see that the new pattern is not very different from the pattern for the previous regulator.

Once you have the regulator ready to install in your car, use at least 14 gauge wire for the three connections to the vehicle's electrical system. Remember that the field windings in the altemator have an impedance of only about four ohms so, with a minimum of twelve volts from the battery, the wire has to carry at least four amps. If you have any doubts about the gauge of the wire, use the same stuff that was there originally.

The only other precaution to take when you're using either one of the two regulators is to realize that, since they're designed to be adjustable. they're capable of making the alternator put out a lot of power. While that isn't so bad for short periods of time, having the electrical system run at a constant level of sixteen or seventeen volts is a good way to blow stuff up.
As soon as you have the circuit connected and you're sure that the whole charging system is working. spend a little bit of time with your multimeter to calibrate the potentiometer (R10). Adjusting the potentiometer will change the trip point of the regulator and you should have those voltages marked wherever you have the potentiometer mounted. Red-line the settings at sixteen volts-you never, NEVER want the system voltage to get beyond that point.
If you're one of those unfortunate people who have a generator as your system's electrical engine, none of the circuits we've developed are suitable. As we discussed last month, since the amount of current you get from a generator is solely dependent on how fast it's turning, the only way to control the current being fed to the electrical system is to have a make-and-break type switch between the generator's output and the rest of the electrical system.

You can always use an alternator/ regulator combination in place of a
generator. The only problems you'll have are mechanical ones, since you'll more than likely have to fabricate your own mounting brackets and you may be forced to do a bit of surgery to make everything fit in securely. While doing a substitution like this is simple in theory, in practice there are a couple of nasty things that can screw you up if you're not careful.

The two big hassles are the substitute alternator's maximum current output for a given RPM and the size of the alternator pulley. As your starting point, you want the alternator to be able to generate enough current when the engine is idling. I can't give you exact figures since they'll depend on your vehicle. You might be able to get them from the paperwork covering your existing generator.

Once you have a ballpark current figure, you're ready to start the search for a suitable alternator. Most alternator pulleys are about half the diameter of the main one driven by the engine. That means the alternator generally turns twice as fast as the
engine and the alternator you need should have a high enough maximum current output at about twice your engine idle speed. The voltage regulator will take care of determining how much below that maximum current is right for your system. All you'll have to do is put a multimeter across the battery and adjust R10.

What makes everything complicated is the fan belt. You want to be absolutely sure that, once you have the new alternator mounted next to the engine, you can use a standardsize fan belt. This is such a big deal that I'd remake the alternator mounts to change the circumference of the needed fan belt. Nothing is worse than not being able to get replacement fan belts from any auto supplier in the universe.

I wish I had a simpler answer to the problem of generators but all I've ever done is replace them with alternators. I'll admit that it's a lot more work than building a replacement regulator but the ultimate outcome is a lot better.

R-E

SELECT 5 BOOKS for only ${ }^{5} 4^{95}$
 (values to \$152.75)

$3414 \quad 539.95$
Counts 852
2883 P $\$ 18.95$
$585120-2 \quad \$ 12.95$

${ }_{3321 \text { P }} \quad \$ 16.95$

$3550 \quad \$ 34.95$ Counts as 2

※ Radio-Electronics, January 1992

10024 $\$ 32.95$
Counts as 2

${ }_{9372 \mathrm{P}} \quad 521.95$

3145P $\quad \$ 12.95$

3576 ($514.95 \quad \begin{array}{r}3270 \\ \text { counts 3s } 232.95\end{array}$

Membership Benefits - Big Savings. In addition to this introductory offer, you keep saving substantially with members' prices of up to 50% off the publishers' prices. - Bonus Books. Starting immediately, you will be eligible for our Bonus Book Plan, with savings of up to 80% off publishers' prices. - Club News Bulletins. 15 times per year you will receive the Book Club News, describing all the current selections-mains, alternates, extras-plus bonus offers and special sales, with scores of titles to choose from. - Automatic Order. If you want the Main Selection, do nothing and it will be sent to you automatically. If you prefer another selection, or no book at all, simply indicate your choice on the reply form provided. You will have at least 10 days to decide. As a member, you agree to purchase at least 3 books within the next 12 months and may resign at any time thereafter. - Ironclad No-Risk Guarantee. If not satisfied with your books, return them within 10 days without obligation! - Exceptional Quality. All books are quality publishers' editions especially selected by our Editorial Board.
(Publishers' Prices Shown)
All books are hardcover unless number is followed by a "P" for paperback O1992 ELECTRONICS BOOK CLUB, Blue Ridge Summit, PA $17294-0810$

PC-BASED TEST EOUIPMENT
 continued from page 62

specified value, the relay will be energized. When the temperature rises again, the relay will be de-energized. For example, to trip at $10.5^{\circ} \mathrm{C}$, add the lines shown in Listing 2 between lines 16 and 17 of the original program.

You can also change the value in the FOR-NEXT loop to alter the time between samples. For instance, on the author's system, changing the value to 5000 causes samples to be collected once every 10 seconds. The exact time depends on your PC's speed, so you'll have to experiment.

With a longer time between samples, you can log data samples to disk. To do so, change lines 4,16 and 17 as shown in Listing 3.

To read and display the resultant data, run the program shown in Listing 4.

Other inputs

The signal conditioner circuit can accept other input sources, including linear-displacement potentiometers (LDP's), piezoelectric transducers, and microphones. An LDP is a specialized potentiometer whose wiper moves linearly instead of in the normal circular fashion. Usually these extremely accurate devices, which can be purchased from surplus electronics suppliers, are mechanically connected to a moving mechanism. They convert linear motion into a corresponding resistance. If a DC voltage is placed across the LDR, the output at the wiper is a voltage proportional to the amount of displacement of the slider.

Piezoelectric devices can be attached directly to a surface to measure tension and stress. Unlike an LDP, a piezoelectric device produces a voltage directly, hence doesn't need a DC voltage source. A microphone can also be used to measure sound-related phenomenon.

In fact, any device that can provide a voltage that varies between zero and a few hundred millivolts can be connected to the circuit

FIG. 3-AN AUDIO LIMITER will turn the volume down for you whenever the sound gets too loud.
amplifier has to pass through the resistor on the $+V$ line. The amount of current drawn by the amp will vary in direct proportion to the amount of work the amplifier has to do. As the input signal increases, so does the amount of current the amplifier needs to handle it.
The voltage created across the resistor is a DC analog of the AC audio voltage at the amplifier's inputs. The DC voltage controls the transistor and, when it's high enough, the transistor will turn on and energize the LED in the optoisolator. That will change the resistance of the photoresistor wired into the amplifier's feedback loop and, as a result, cause a change in the gain of the amplifier. All the parts used in the limiter are easy to find with the possible exception of the optoisolator. That isn't a big deal since you can make one of your own by using a standard LED and photoresistor. Just put them next to each other in a small tube and seal up the tube ends to make it light-tight.
Building the circuit is a lot easier than getting it into your TV set. If you have any doubts at all about doing it, you're much better off forgetting the whole idea. You really don't want to blow up the TV or yourself in the process of modifying the audio.
If you're TV has an earphone jack. you can build the circuit in a small box and run the audio from the jack, through a small isolation transformer, through the limiter, and finally connect it to a separate amplifier and speaker.

POWER-SUPPLY REPAIR I have an IBM-compatible computer and the power supply died on me. I took it out of the case and, after some investigation, l'm pretty sure that one of the transformers is shorted. It seems like a shame to buy a new supply since all it would take to repair my old one is replacing one component. Do you have any sources of supply for the transformer I need?G. Benfisch, New York, NY

All of the IBM-type power supplies are regulated switchers and they all use at least two transformers-one for the AC line voltage and the other for the switcher. You didn't specify which one was shorted but remember that both of them have to fit exactly on the printed circuit board. You can probably find a replacement transformer that has the same specs as the one you need but you also have to make sure it fits on the board.
If you are willing to devote a lot of time to catalogs, ads, and the telephone, you might come up with something suitable, but since a whole replacement supply costs only about forty or fifty bucks from just about every supplier in the universe, I can't see any reason to screw around with fixing your old one.

Your time has to be worth something, and even if you found a replacement transformer I wouldn't be surprised if it costs as much as a whole new power supply. But then again, the education just might be worth the expense.

R-E

SPEAKER MATE
continued from page 66

gain is built into the unit to allow for different electret microphones, but it can be set very high before any feedback occurs. You can actually set the gain to the point where you can be heard on the speakerphone in an adjacent room.

With the unit plugged into your phone line, turn the ANswer switch on and you should hear a dial tone. (You may need a " Y " adaptor to put the Speaker-Mate in parallel with an existing telephone.) The dial tone will not be very loud because the device is designed to limit the volume of the dial output, but you will hear it. The level control will respond only a little bit due to the limiting action of the dial-tone detector within IC1.
The next step is to get a friend to help you set up the microphone gain. The mid setting will probably be close, but you may want more gain depending on the environment and if you want to be able to use the device at some distance. Remember, though, that at higher settings background noise will also come through and the speech may have an echo. For desk use, a setting can be found that allows talking in a normal voice with the unit placed about 15 to 20 inches from the user. Remember that the person you are talking to is the judge of the microphone setting, and the volume control affects only your received listening level.

Once set up, you must call someone on a conventional phone, turn on the SpeakerMate, and then hang up the regular phone. To receive calls, simply answer with the SpeakerMate and speak in a normal voice. The sound quality is so good that the calling party will probably not even know you are using a speakerphone.

User add-ons

In a rural installation, the added distance from the central phone office can cause a reduction in loop current to the point
where line-powered operation of the project may become marginal. Performance in the talk path is normal, but the received audio may have a pumping sound due to the lack of available current to reproduce the audio peaks.

While the project would still be usable, Fig. 7 shows a simple external power addition which consists of adding a $1 / 8$-inch miniature jack (J2), a DPDT slide switch (S3), and a diode (D2). The parts can be mounted on the rear panel of the project case and wired into the printed-circuit board. The PC board is prepared by removing jumper JUl and connecting the two wires from S3 in place of JUl; the ground connection can be made to a spare hole in the board provided for this purpose.

As shown in Fig. 7, S3 will switch the unit between being line-powered and powered from an external source. If you're using the external-power modification, a 4.5 - or 6 -volt DC wall adaptor is perfect. Do not exceed 6 volts, as the Zener diode is not in the circuit when using external power.

The Speaker-Mate is not a stand alone telephone because a ringer is needed to hear incoming calls and a dialer is required to make outgoing calls. You may want to add the ringer to the Speaker-Mate, as shown in Fig. 8. The tone ringer chip (IC3), manufactured by Texas Instruments, monitors the telephone line for a ring signal of 15 to 68 $\mathrm{Hz}, 40$ to 150 volts AC. The ring signal powers a two-tone warble signal generated by IC3. The output of the device drives a solidstate piezoelectric transducer. The circuit can be installed within the Speaker-Mates enclosure and the transducer can be mounted on the front or rear panel, with a small hole drilled as an audio port.

There is also a dialer circuit you can build using Motorola's MC145412 IC and a handful of other miscellaneous parts. The schematic for the dialer circuit is available from Project-Mate (see the parts list) if you send a selfaddressed stamped envelope (SASE).

CIMPDTHR मONNPMTINS

Multimedia mayhem

Jत्रF HOLTTMAN

Multimedia. It may be the first overhyped buzzword of the 90's. Or it may be the beginning of Gutenberg II. Gutenberg I occurred around the year 1440, when Johannes Gutenberg invented movable type, thus clearing the way for high-volume printing. High-volume printing did two things: it vastly increased the variety of literature available, and it vastly increased the audience for that literature. Sixty years later, millions of books had been printed, and Europe was home to thousands of what we today might call "QwikPrint" shops. Five hundred and fifty one years later, we're on the threshold of another revolution in publication technology. Gutenberg I brought to the masses media for the efficient transmission of language; Gutenberg II will bring to the masses media for the efficient transmission of all aural and visual information.

That's a grandiose claim. However, the confluence of several social and technological factors makes it a likely one.

Socially, traditional forms are losing out to other media. Literacy is dropping; mixed-media forms of education and entertainment are becoming increasingly popular. People depend more on CNN than the New York Times to keep abreast of current events. Computer-generated graphics receive frequent showings in major art centers. Electronic music has received the attention of serious composers. Live drama is now minuscule compared to film. Traditional print publishers are dabbling in new forms-books on tape, encyclopedias on CD-ROM. And video games are preparing an entire generation for a lifetime of interaction with electronic media. High schools are graduating illiterate, innumerate people; to compensate, corporations are spending billions educating, reeducating, and preeducating this increasingly unqualified work force.

FIG. 1-MULTIMEDIA ARCHITECTURE provides a standard interface for multimedia applications to build on.

You may bemoan the loss of traditional modes of communication-and I would join you. Nonetheless, it's happening. So you can either throw up your hands or find a way of preserving the old while embracing the new. And that's where multimedia fits in.

Gutenberg II

In addition to those social factors, there's a whole lot of technology coming together to set the stage for Gutenberg II. The basic architecture is shown in Fig. 1.

Multimedia demands computing power, including a fast CPU, lots of memory (RAM) and permanent storage (disk), and high resolution video. Now this base technology level is here, at affordable prices.

On top of the base technology layer is a user-friendly graphical environment, with special extensions to

VENDOR INFORMATION

SideBar (\$99.99), Paper Software, P.O. Box 567, New Paltz, NY 12561. (800) 551-5187, (914) 255-0056.

CIRCLE 41 ON FREE INFORMATION CARD
High-Tech Ventures, The Guide for Entrepreneurial Success, (\$29.25) C. Gordon Bell and John E. McNamara, by AddisonWesley, April 1991.
CIRCLE 42 ON FREE INFORMATION CARD
handle new media (sound cards, CDROM drives, MIDI interfaces, laserdisc and other motion video sources, etc.). The graphical environment is a highly contentious area right now, but recent events lead me to the conclusion that when all the smoke clears, there's going to be much less different among the competing systems than there is in common. Windows, OS/2, and the Mac environment are all headed toward standards. Architectural layering will hide underlying technologies, so it won't matter whether you're running the Mac Finder, Windows' Program Manager, or the OS/2 Desktop. It'll matter even less whether it's an Intel or Motorola CPU under the hood. When you plug in the latest multimedia extravaganza, it'll just run.

At the highest level are the applications. There are some 2500 CD. ROM titles in "print" right now. Few of these are multimedia based; the vast majority consist of pretty boring text/numeric databases. However, several dozen full multimedia titles will be released between the time this is written and the time you read it; 1992 promises the release of hundreds of new titles. Such as? How about: Compton's Multimedia Encyclopedia, the Guinness Multimedia Disk of Records, Just Grandma and Me: A Broderbund Living Book, Countries of the World, Composer Quest, The Electronic Library of Art, Berlitz language lessons (Spanish. French, German, Italian), Great Cities of the World, Battle Chess, SimCity, The Macmillan Dictionary for Children. Multimedia Beethoven, Introductory Games in French and Spanish, World Atlas, Desert Storm.

There are other factors contributing to this revolution in publishing. Hypertext research initiated by Ted Nelson in the early 60's plays a prominent role. Advances in cognitive and instructional psychology also contribute significantly.

TABLE 1-MULTIMEDIA HARDWARE LEVELS			
Component	Base Level	Power User	Developer
CPU	$80286 / 10 \mathrm{MHz}$	$80386 / 25 \mathrm{MHz}$	$80486 / 33 \mathrm{MHz}$
RAM	2 MB	4 MB	16 MB
Hard disk	30 MB	80 MB	$0.5-1.0 \mathrm{~GB}$
Video	VGA (16 color)	VGA (256 color)	$1024 \times 768 \times 256$ color, non-interlaced, video overlay
Optical storage*	CD-ROM with audio output		
Audio*	8 -bit DAC, 8-bit ADC, 11 and 22 kHz sampling rates. 16 -bit DAC and ADC preferred. Multi-voice synthesizer. MIDI		
*Note: Required for upgrade kit			

Getting in step

Chances are you don't own a multi-media-compatible PC right now. But as those titles are released, you're going to start thinking strongly about buying one, or about buying an upgrade kit for your existing PC (or buying separate components for an upgrade.)

Microsoft has defined a basic multimedia PC as shown in Column 2 of Table 1; performance-conscious users will want a system like that in Column 3; developers will opt for something like Column 4. An upgrade kit consists of a CD-ROM drive, along with an audio board that provides ADC, DAC, and MIDI support.

NCR, CompuAdd, Tandy, NEC, Olivetti, Zenith, Fujitsu, and Philips have all announced or begun shipping multimedia PC's; prices start around \$2500. Upgrade kits starting around $\$ 700$ are available from CompuAdd, Creative Labs, Headland, Media Vision, and Tandy.

It's only a matter of time before all major hardware vendors provide similar offerings.

Standards and competition

Microsoft initiated formation of a trade group, the Multimedia PC Marketing Council (MPMC). Since its formation, however, the MPMC has attached itself to the Software Publishers Association, thereby guaranteeing that no one vendor's interests will be served at the expense of others-or the consumer's.

Nonetheless, there is IBM, which has been strangely silent about the

MPMC. The IBM/Microsoft battle is one thing, but bear in mind that IBM is heavily involved in multimedia technologies. A few years ago Big Blue introduced a touch-screen system that is widely used in training applications. The company has an entire division dedicated to educational systems; it has funded or sponsored projects that we'll soon be hearing lots about, including one on the voyage of Columbus. Other IBM titles include Ulysses, the Declaration of Independence, and Hamlet. Expect a strong showing-when IBM is ready.
There are some other technologies that have been hanging around for years, waiting to become economical and adopted by large numbers of users. DVI (Digital Video Interactive) is one; CD-I (Compact Disc Interactive) is another. It's too soon to tell whether the Microsoft/MPMC standards will really take hold. It's likely that they will, however. These standards are comprehensive, are built on general-purpose computing platforms, and are supported by a fairly broad spectrum of vendors. Why would the average consumer buy a CD-I player when he or she can get the same effect on a PC that also allows word processing, checkbook balancing, etc? DVI, CDI, and similar technologies will either become compliant with emerging standards, remain as they are and carve out niche markets, or simply die.

Conclusions

Above I said that Gutenberg II would support all sound and visual information. Want to guess what

FIG. 2-SIDEBAR is the most elegant Windows shell on the market. It won't overload you with features; rather it adheres to a small-is-beautiful philosophy. Nice work.

Gutenberg III will support? Even better, when it'll happen?

News bits

Intel's microprocessor line is coming under increasing pressure. Chips \& Technologies, which has suffered financial hardships in recent years, has bet the farm on two new chip lines that the company hopes will restore it to the glory of former days. One line comprises a set of 386DX and 386SX CPU's; the other is a complete PC-on-a-chip. The latter combines fully compatible versions of the major system components (8086 CPU, 8254 timer, 8259 interrupt controller, DMA emulator, XT bus controller, CGA graphics controller, and 16C450 UART) in a single package called the F8680. Building a system with the F8680 amounts to
continued on page 92

BUYER'S MART

FOR SALE

TUBES: "oldest," "latest." Parts and schematics. SASE for lists. STEINMETZ, 7519 Maplewood Ave. R.E., Hammond, IN 46324.

RESTRICTED technical information: Electronic surveillance, schematics, locksmithing, covert sciences, hacking, etc. Huge selection. Free brochures. MENTOR-Z, Drawer 1549, Asbury Park, NJ 07712.

CABLE TV converters: Jerrold, Oak, Scientific Atlantic, Zenith \& many others. "New MTS" stereo add-on: mute \& volume. Ideal for 400 and 450 owners! 1 (800) 826-7623, Amex, Visa, M/C accepted. B \& B INC., 4030 Beau-D-Rue Drive, Eagan, MN 55122.

> FREE CATALOG
> FAMOUS "FIRESTIK" BRAND CB ANTENNAS AND ACCESSORIES. QUALITY PRODUCTS FOR THE SERIOUS CB'er. SINCE 1962 FIRESTIK ANTENNA COMPANY 2614 EAST ADAMS
> PHOENIX, ARIZONA 85034

TUBES, new, up to 90% off, SASE, KIRBY, 298 West Carmel Drive, Carmel, IN 46032.
T.V. notch filters, phone recording equipment, brochure $\$ 1.00$. MICRO THing. Box $63 / 6025$, Margate, FL 33063. (305) 752-9202.
CIRCUIT Boards - Complete printed circuit fabfrication from single sided to production multilayers Twenty-four hour turnaround available. CIRCUIT CENTER, PO Box 128, Addison, IL. 60101. (708) 543-0671.
PREVENT descrambler detection \& damage! Order Tech-Block today! Simple in-line connection. Only \$19.95 P.P.D. THE STAGE DOOR VIDEO, PO Box 518, Belleview, FL 32620. For C.O.D.'s 1 (800) 395-4557.

Quality Microwave TV Antennas
WIAELESS CABLE - IFTS - MMDS - Amateur TV Ultra High Gain 50db $(+)$ • Tuneable 1.9 to 2.7 Gmz .

- 36-Channel System Complete $\$ 149.95$ - 12-Channel System Complete $\$ 114.95$ - Call or write (SASE) for "FREE" Catalog PHILLIPS-TECH ELECTRONICS P. O. Box 8533 . Scottsdale, AZ 8525 (602) $947-7700$ (53.00 Credit all phone orders) MasterCard - Visa $~$ COD's - Quantity Pricing

DESCRAMBLERS cable TV converters, lowest prices, guaranteed, best quality, all types available, CNC CONCEPTS, INC., Box 34503, Minneapolis, MN 55434. 1 (800) 535-1843.
TOCOM and Zenith "test" chips. Fully activates unit. $\$ 50.00$. Cable descramblers from $\$ 40.00$. Orders 1 (800) 452-7090. Information (213) 867-0081.

Abstract

SPEAKER repair. All makes - models. Stereo \& professional. Kits available. Refoaming $\$ 18.00$. ATLANTA AUDIO LABS, 1 (800) 568-6971.

REMOVE tamper resistant tory screws. Set includes seven $1 / 4$ " bits. $\$ 29.95$ plus $\$ 3.50$ S\&H. SUN SET ELECTRONICS, 12145 Alta Carmel Court Suite 250-139, San Diego, CA 92128.

CLASSIFIED AD ORDER FORM

To run your own classified ad, put one word on each of the lines below and send this form along with your check to:
Radio-Electronics Classified Ads, 500-B Bi-County Boulevard, Farmingdale, NY 11735
PLEASE INDICATE in which category of classified advertising you wish your ad to appear. For special headings, there is a surcharge of $\mathbf{\$ 2 5 . 0 0}$.
() Plans/Kits () Business Opportunities
() For Sale
$\left\{\begin{array}{lll}\text { Education/Instruction } & \text { () Wanted } & \text { () Satellite Television } \\ \hline\end{array}\right.$

Special Category: $\$ 25.00$

PLEASE PRINT EACH WORD SEPARATELY, IN BLOCK LETTERS.
(No refunds or credits for typesetting errors can be made unless you clearly print or type your copy.) Rates indicated are for standard style classified ads only. See below for additional charges for special ads. Minimum: 15 words.

We accept MasterCard and Visa for payment of orders. If you wish to use your credit card to pay for your ad fill in the following additional information (Sorry, no telephone orders can be accepted.):

Card Number
Expiration Date

ELECTRONIC supermarket surplus prices! Transformer specials, railroaders, builders, engineers, experimenters, LSASE, FERTIK'S, 5400 Ella, Phila., PA 19120.
OUR monthly picture flyer lists quality surplus parts at low prices. Single and quantity prices. STARTRONICS, Box 683, McMinnville, OR 97128.
PHOTOFACT folders under \#1400 \$5.00. Others $\$ 7.00$. Postpaid. LOEB, 414 Chestnut Lane, East Meadow, NY 11554. (516) 481-4380

CB RADIO OWNERS

We specialize in a wide variety of technical information, parts and services for CB radios. 10-Meter and FM conversion kits, repair books, plans, high-performance accessories. Thousands of satisfied customers since 1976! Catalog \$2.

CBC INTERNATIONAL
P.O. BOX 31500RE, PHOENIX, AZ 85046

\qquad
1
Please Print Name

IF YOU USE A BOX NUMBER YOU MUST INCLUDE YOUR PERMANENT ADDRESS AND PHONE NUMBER FOR OUR FILES. ADS SUBMITTED WITHOUT THIS INFORMATION WILL NOT BE ACCEPTED. CLASSIFIED COMMERCIAL RATE: (for firms or individuals offering commercial products or services) $\$ 3.10$ per word prepaid (no charge for zip code)...MINIMUM 15 WORDS. 5% discount for same ad in 6 issues; 10% discount for same ad in 12 issues within one year; if prepaid. NON-COMMERCIAL RATE: (for individuals who want to buy or sell a personal item) $\$ 2.50$ per word, prepaid....no minimum ONLY FIRST WORD AND NAME set in bold caps at no extra charge. Additional bold face (not available as all caps) 55 c per word additional. Entire ad in boldface, $\$ 3.70$ per word. TINT SCREEN BEHIND ENTIRE AD: $\$ 3.85$ per word. TINT SCREEN BEHIND ENTIRE AD PLUS ALL BOLD FACE AD: $\$ 4.50$ per word. EXPANDED TYPE AD: $\$ 4.70$ per word prepaid. Entire ad in boldface. $\$ 5.60$ per word. TINT SCREEN BEHIND ENTIRE EXPANDED TYPE AD: $\$ 5.90$ per word. TINT SCREEN BEHIND ENTIRE EXPANDED TYPE AD PLUS ALL BOLD FACE AD: $\$ 6.80$ per word. DISPLAY ADS: $1^{-1} \times 21_{4}^{*-}-\$ 410.00 ; 2^{-} \times 21 / 4^{-}-\$ 820.00 ; 3^{+} \times$ $21 / 4^{\prime \prime}-\$ 1230.00$. General Information: Frequency rates and prepayment discounts are available. ALL COPY SUBJECT TO PUBLISHERS APPROVAL. ADVERTISEMENTS USING POO. BOX ADDRESS WILL NOT BE ACCEPTED UNTIL ADVERTISER SUPPLIES PUBLISHER WITH PERMANENT ADDRESS AND PHONE NUMBER. Copy to be in our hands on the 5 th of the third month preceding the date of the issue. (i.e., Aug. issue copy must be received by May 5 th). When normal closing date falls on Saturday, Sunday or Holiday, issue closes on preceding working day. Send for the classified brochure. Circle Number 49 on the Free Information Card.

TEST equipment pre-owned now at affordable prices. Signal generators from $\$ 50.00$, oscilloscopes from $\$ 50.00$, other equipment, including manuals available. Send $\$ 2.00$ U.S. for catalog, refunded on 1st order. J.B. ELECTRONICS, 3446 Dempster, Skokie, IL 60076. (708) 982-1973.

DESCRAMBLERS: Oak Sigma, Varisync, Hamlin, Scientific Atlanta, Jerrold, Pioneer, Syivania. Cata$\log \$ 5.00$ moneyorder (credited first order), service manuals, schematics, SURPLUS ELECTRONICS, PO Box 10009, Colorado Springs, CO 80932.

WIRELESS CABLE RECEIVERS 1.9 TO 2.7 GHz
 30 CH PARABOLIC DISH SYSTEM $\$ 173.90$ 30 CH ROD ANIENNA SYSTEM $\$ 193.90$ 30 CH CRYSTAL CONTROLLED SYSTEM $\$ 294.95$ SUN MICROWAVE INTL. INC. SEND S1.OD FOR P.O. BOX $=34522$ CATALDS ON THESE PHOENXX, AZ. 85057 AND OTHER FINE (602) $230-1245$ QUANTITY DISCOUNTS
OROERS OMLY 1-800-484-4190 COOE 9783

YO! Like to go exploring? New computer maze game - Dungeon Thief. Simple, fun, for all ages abilities. Full game $\$ 15.00$, demo $\$ 3.00$. PC s $\mathrm{s} / \mathrm{com}$ patibles, color or mono. Specify disk ($5.25,{ }^{\prime \prime} 3.5^{\prime \prime}$) Check/m.o. to: SENTE SYSTEMS,INC., Dept. 67 Box 9439, Anaheim, CA 92812.

MASTERCARD AND VISA are now accepted

 for payment of your advertising. Simply complete the form on the first page of the Market Center and we will bill.ELECTRONIC test equipment and parts. Free catalog. EF ELECTRONICS, Box 326, Aurora, IL 60506.

DESCRAMBLERS, all brands, examples Tocom VIP w/r \$275.00. Oak RTC-56 w/r 10 @ \$89.00, M-3 5-B $\$ 35.00$ - $10 @ \$ 29.00$, FT.B. $10 @ \$ 59.00$, SA3-B $10 @ \$ 59.00$, Hamlin CRX-6600 w/r $10 @$ $\$ 79.00$, Sylvania 4040 DIC replaces Jerrold 400 DIC w/r 10 @ \$69.00, full warranty C.O.D. orders OK MOUNT HOOD ELECTRONICS, (206) 260-0107.

TEST TURN-ONS SA 8580 SA 8550 SA 8500 SA 8570/90 Zenith all Jerrold Starcom 6/7 Tocom-VIP $\$ 44.95$ each 1 pc boxes SA 8580 Starcom 7B/B Pioneer 6110 Tocom VIP $\$ 279.95$ each. 1 (800) 74 CABLE.

CB TV Jerrold 450-DIC \$45.00, JSX-DIC M35B or SB-3 $\$ 19.00$, RTC-56 $\$ 79.00$. Other brands in stock. For dealers only (405) 685-2048.
TUBES. Thousands. \$.85. None higher. SASE for list. CHUCK ADAMSON, 3410 Sands, EI PAso, TX 79904. (915) 757-8609.

> CABLETV
> DESCRAMBLER LIQUIDATION: FREE CATALOG! Hamlin Combos \$44, Oak M35B $\$ 60(\mathrm{~min} .5)$, etc. WEST COAST ELECTRONICS For Information: 818-709-1758
> Catalogs \& Orders: 800-628-9656

Ferro Fluid

Pro-Tech ferro fluid is commonly used on voice coils to substantially improve frequency response. increase transient and continuous power handling capabilities and reduce second and third order harmonic distortion. It reduces the Q and lowers the impedance peak at resonance without a significant reduction in SPL. Ferro fluid can effectively increase power
 handling capability of a driver by 200-300\%. General purpose fluid for tweeters and midranges only. 10cc bottle (enough for 75-100 weeters).
\#RM-340-430

$$
\$ 19_{\text {Each }}^{95}
$$

Light Oak Speaker Cabinet
Premium ported speaker cabinet made of acoustical grade
 particle board and covered with a light oak vinyl laminate. Precut with an 11-1/4* hole for use with most 12^{\prime} woofers. The baffle board has no weeter or midrange holes for design flexbility. The $3 / 4^{-}$thick particle board ensures low panel resonance. Dimensions: $11^{*} \times 15^{\circ} \times$ 27. Volume: 2.5 cu ft. Grill and terminal included. Sold individually.
\#RM-262-100
$\$ 49^{00}$
$\$ 45^{50}$
Each
(2-up)

12 Gauge Neon Wire

The competition in today's auto sound contests is so fierce that good sound alone is not enough to win. More and more installers are striving to make their installation more pleasing to the eye. Parts Express now stocks
12 gauge speaker wire in vibrant neon colors. This wire is the same high quality, made in the U.S. wire you have used before, but now it has flashy, neon colored insulating Jackets. Available in neon pink, neon green, and neon orange. Sold by the foot on or 50 ft . spools.
\#RM-100-162 (Neon pink) \#RM-100-166 (Neon orange) $49^{6} / \mathrm{Ft}$. \#RM-100-170 (Neon green)
Tuned Port Tubes
These attractive, preformed tuned ports allow the back pressure radiated from the rear of the wooler to reinforce the sound level in front. Made of black plastic.

Part \#	Length	Dia.	(1-9)	(10-up)
\#RM-260-320	2^{*}	$1.7 / 8^{*}$	1.40	.95
\#RM-260-321	4^{*}	1.78^{*}	1.60	1.20
\#RM-260-322	5^{*}	2^{*}	1.65	1.30
\#RM-260-323	1^{*}	$2-7 / 8^{*}$	1.40	.95
\#RM-260-324	5^{*}	$2.7 / 8^{*}$	1.85	1.50
\#RM-260-326	3^{*}	$2.7 / 8^{*}$	1.65	1.30
\#RM-260-327	$2-1 / 2^{*}$	$3.7 / 8^{*}$	1.85	1.50
\#RM-260-328	5^{*}	$3.7 / 8^{*}$	1.95	1.60

Famous Maker 3-1/2" Speaker Pair
Dual cone 3-1/2" speaker pair for upgrading stock dash speakers. Graphite fiber composite wooter cone provides a smooth extended response at all power levels.
The high frequency radiator
(whizzer) takes over from the woofer at $6,000 \mathrm{~Hz}$ and greatly extends the response past 20 KHz . Strontium ferrite magnet. $3 / 4^{*}$ high temperature voice coil. Impedance: 4 ohm. Power handling capability: 25 watts continuous, 70 watts peak. Frequency response: $120-$ $21,000 \mathrm{~Hz}$. Equipped with dust screen. Made in the U.S. by a company with over 40 years experience in the auto sound market.
\#RM-265-275

$$
\$ 29_{\text {fat }}^{95}
$$

Subwoofer Input/Output Terminal

This recessed terminal panel has inputs for right and left channels as well as outputs for right and left channels to route to your satellite speakers. Greatly simplifies subwooler hook-up. Outside dimensions: $3-7 / 8^{\prime \prime} \times 5-3 / 8^{\prime \prime}$.
\#RM-260-308

$\$ 3^{95}$	(10-up)
$(1-9)$	$\$ 50$

- 15 day money back guarantee $\boldsymbol{\$} \$ 15.00$ minimum order *

We accept Mastercard, Visa, Discover, and C.O.D. orders.
24 hour shipping \cdot Shipping charge $=$ UPS chart rate $+\$ 1.00$ ($\$ 3.00$ minimum charge) - Hours 8:30 am - 7:00 pm EST,
340 E. First St., Dayton, Ohio 45402 Local: 1-513-222-0173 FAX: 513-222-4644

BUILD our picture only, satellite TV descrambler for most channels. Uses 6 transistors and 4 chips. Most parts from Radio Shack. For educational purposes only, not to be used illegally. Circuit board and plans $\$ 30.00$ U.S. funds. Circuit board, plans, and parts kit $\$ 89.00$ U.S. funds. Build a super high economy carburetor, to make eight cylinder engines run on less than one gallon of gasoline per hour. Plans for 5 types $\$ 20.00$ U.S. funds. Cheque, money order or Visa welcome. Order from VALLEY MICROWAVE, Bear River, Nova Scotia, Canada B0S 1B0. Tel. (902) 467-3577 8 to 4 eastern time. Fax: (902) 467-3937 anytime.
INVESTIGATORS, experimenters - Quality new plans. Micro and restricted devices. Free catalog. Self addressed stamped envelope required. KELLEY SECURITY, INC. Suite 90, 2531 Sawtelle Blvd., Los Angeles, CA 90064.

REMOTE CONTROL KEYCHAIN

 Complete w/mini-transmitter Fully assembled including plans fo build your own auto alarm Quantity discounts available
$\$ 24.95$ Check, Visa or M/G VISITECT INC,
(510) $531-8425$ Box 14156 , Fremont, Ca, 94539
$\mathrm{Fax}(510) 531-8442$

PCB and schematic CAD. $\$ 195.00$ IBM EGA CGA Multilayer, rubberband, autovia, NC drill, laser, dot matrix, plotter, library, Gerber, AUTOSCENE, 10565 Bluebird St., Minneapolis, MN 55433. (612) 757-8584 free demo disk.
GREAT value. Precision fully-regulated supply $(2+x 0-50 \mathrm{~V}+i-0.01 \% 5 \mathrm{~A} 0.5 \%)$ and $(1+\times 5 \mathrm{~V}-3 \mathrm{~A})$. Tested parts as specified Radio El. Mar/90. No case U.S. $\$ 560.00+\$ 20.00$ shipping (U.S./Can) cheque or M.O. to: BCH, 150 Clark Blvd., Dept. 299, Bramalea, Ontario Canada L6T-4Y8.

EDITOR with source $\$ 49.00$ modify and sell all you like. No royalties. Written in QuickBasic version 4.5 . Manual on disk included. TARBELL ELECTRONICS, 5881 John Avenue., Long Beach, CA 90805. (213) 423-2792.

PLANS AND KITS

FASCINATING electronic devices! Dazers! Lasers! FM/AM/phone transmitters! Detectors! Kits/assembled! Catalog $\$ 2.00$. QUANTUM RESEARCH, 16645-113 Avenue, Edmonton, AB, T5M 2 X2.
HOBBY/broadcasting/HAM/CB/surveillance transmitters, amplifiers, cable TV, science, bugs, other great projects! Catalog $\$ 1.00$. PANAXIS, Box $130-$ F1, Paradise, CA 95967.
DIGITAL recorder. Digitally record any audio source with special effects. Microprocessor controlled device. Detailed plans, $\$ 9.75$: T. ZURAW, Box 341, Dearborn Hts, MI 48127.

Cable TV Descrambler Kits

Universal Kit.
\qquad
$\$ 55.00$

Includes all parts and PC Board. Not included
is the ac adaptor or enclosure.
Tri-Mode Kit.
$\$ 39.00$
\#EX192
All major brands carried
*JERROLD, *TOCOM, *ZENITH *GENERAL INSTRUMENTS *SCIENTIFIC ATLANTA, *OAK *HAMLIN, *EAGLE, *PIONEER
7th Year in business. Thank You Member of Omaha Chamber of Commerce 1 Year warranty on new equipment 30 Day money back guarantee
Orders shipped from stock within 24 hours CALL TODAY FOR A FREE CATALOG 1-800-624-1150
 MDVELECIRONICSY

875 SO. 72 nd St. Omaha, NE 68114

Converters, Remote Controls, Descramblers, more

Includes all parts. PC Board and AC Adaptor. Not Included is the enclosure.

SB-3 Kit
$\$ 29.00$
inctudes all parts. PC Board and AC Adaptor. Not included is the enclosure.

Universal Tutorial..............\$9.95
Includes an in depth study of the tecnonology used and has troubleshooting hints.

Tri-Mode Tutorial $\$ 9.95$
includes a gate by gate study of the curcut and has troubleshooting nints.

Call Toll Free 1-800-258-1134

> COD Only

M \& G Electronics, Inc. 72 Orange St., Suite 216 Providence, RI. 02903

Build this kit for under $\$ 60$ which temoves lead vocals from standard removes records, CD's, tapes or FM broadcasts. Easily connects to any home component stereo. Perform Ive with the backgrounds. You can be the lead singer of your tavcrite band. Detailed Plane $\$ 4.95$

Weeder Technologies
14773 Lindsey Rd.
Mt. Orab, Ohio 45154

REMOVE VCR copy protection, PCB PAL instructions $\$ 16.50$ W/P\&H, LOGICAL CHOICE, 955 NW Ogden, Bend OR 97701.
BUG, telephone, FM, plans. Convert RadioShack device, easy. S12.95 ALLAN LABS, PO Box 14302 , 101 Allan Lane, Research Triangle Park, NC 27709.
PRINTED circuit art work. Low cost, for free information write NEGRON ENGINEERING, 159 Garfield Place, Brooklyn, NY 11215. Fax or call (718) 768-4028.
VIDEOCIPHER II/scanner/cable/satellite modifications books. Catalog $-\$ 3.00$. TELECODE, PO Box 6426-RE, Yuma, AZ 85366-6426.
DESCRAMBLER kits. Complete cable kit $\$ 44.95$. Complete satellite kit $\$ 49.95$. Add $\$ 5.00$ shipping. Free brochure. No New York sales. SUMMIT RE, Box 489, Bronx, NY 10465.

CABLE T.V. EQUIPMENT

OAK RTC-56 99.00 M35-B 29.00 TOCOM BULLET PROOF TEST CHIP 59.00 EA TOCOM 5503-VIP 250.00 5503-A 200.00 HAMLIN, JERROLD. ZENITH, S. A LOW AS 19.00 M-F 6A-3P PST. 1-800-622-3799 SAME DAY SHIPPING. FULL WARRANTY

SECURITY system plans for eight zone, entry/exit delay, prealarm controller with independent tamper/ fire zones. Build it yourself for under $\$ 50.00$! Introductory offer also includes plans to modify a readily available product into an inexpensive alarm system motion detector. $\$ 15.00 \mathrm{ppd}$. V-TRONICS, PO Box 177, Ruby, NY 12475.
PLANS: New 150 watts audio amplifier SC compensated with power supply. Send SASE and $\$ 10.00$ to IOVATION, 21 Tennyson, Dover, NH 03820.
ELECTRONIC projects - Complete plans/parts list. Audio/automotive/infrared/magnetic/power/ photographic/custom designs/computer programs. Catalog $\$ 3.00$ credit 1st order. ULRICH ELECTRONICS, 11625 Jefferson St. NE, Blaine, MN 55434.

BUILD 6 simple low cost circuits to extend the functions and ranges of your meters and scope. Easy to build, useful! Send now for complete instructions. \$5.00 BLUE BELL DESIGN, INC., Dept REM, 524 White Oak Rd., Blue Bell, PA 19422.

INVENTORS

INVENTORS! Can you patent and profit from your idea? Call AMERICAN INVENTORS CORP, for free information. Serving inventors since 1975. 1 (800) 338-5656.

SPECIALIZED SECURITY

SURVEILLANCE - Audio/vidoe/infra-red, personal protection equipment. Public, private, corporate uses. Extensive book; \$9.00. Was "Security Systems" catalog. TRI-TRON OF ATLANTA, 1857G Fox Hollow, Lilburn, GA 30247-3363.

SATELLITE TV

FREE catalog-Lowest prices worldwide. SKYVISION, 1012 Frontier, Fergus Falls, MN 56537. 1 (800) $334-6455$. (See full page ad the Shopper section)
SATELLITE TV - Do it yourself - systems. Upgrades. Parts. Major brands discounted 40% 60%. We'll beat everyone's price. L.J.H. INC., call Larry (609) 596-0656.

FREE CATALOC 1-800-648-7938 JERROLD HAMLIN OAK ETC CABLE TV DESCRAMELEBS

 - Compare our Low Retail Prices!
 - Guaranteed Prices a Warranties!
 - Orders Shipped Immediatelyl
 REPUBLIC CABLE PRODUCTS, INC. visa 4080 Paradise Rd. 15 , Dept AE192 Las Vegas, NV 89109 For all other information (702) 362.9026

CABLE TV Secrets - the outlaw publication the cable companies tried to ban. HBO, Movie Channel, Showtime, descramblers, converters, etc. Suppliers list included. \$9.95. CABLE FACTS, Box 711 R, Pataskala, OH 43062.
SECRET cable descrambler. Build your own descrambler for less than $\$ 11.00$, in seven easy steps. Radio Shack parts list included. Also free descrambling methods that cost nothing to try! Send $\$ 10.00$ to: LOUIE WHITE, 2 Marlin, Baytown, TX 77520.

CABLE DESCRAMBLERS OAK M35B COMBO 539.95 Jerrold, Zenith, Hamlin, Sci. Atlanta, Pioneer \& MORE! OUR PRICES ARE BELOW WHOLESALE!

CABLE+PLUS

14417 Chase St. $\# 481$-A Panorama City, CA 91402 1-800-822-9955 - Other Info. 1-818-785-4500 NO CALIF. SALES - DEALERS WANTED

BUSINESS OPPORTUNITIES

YOUR own radio station! Licensed/unlicensed AM. FM. TV, cable. Information $\$ 1.00$. BROADCASTING, Box 130-F1, Paradise, CA 95967.
LET the government finance your small business. Grants/loans to $\$ 500,000$. Free recorded message: (707) 449-8600. (KS1).

EASY work! Excellent pay! Assemble products at home. Call toll free 1 (800) 467-5566 Ext. 5192.

FREE GATALOG

- CABLE T.V. BOXES - ALL TYPES -- LOW PRICES - DEALER PRICES •

$\underbrace{\text { AGE PRODUCTS }}_{1-800-234-0726}$

HOME assembly work available! Guaranteed easy money! Free details! HOMEWORK-R, Box 520 , Danvile, NH 03819.
WHAT snow? For sale: thriving, fully equipped, au-dio-video repair shop. Proven $40 \%+$ increase in net last three years. $\$ 70,000.00$ cash. AUDIOTECH, 256-B North Highway 101, Encinitas, CA 92024. FAX (619) 944-0345, Phone (619) 944-9048.

MAKE SSS! Become an American electronics dealer! Profit opportunities since 1965. Call SCOTT PRUETT, 1 (800) 872-1373.
MONEYMAKERS! Easy! One man CRT rebuilding machinery. $\$ 6,900.00$ rebuilt $\$ 15,900.00$ new. CRT, 1909 Louise, Crystalake, IL 60014. (815) 459-0666. Fax (815) 477-7013.

BIG ELECTRONIC ASSEMBLY BUSINESS

Start home. spare time. Investment knowledge or
experience unnecessary. BIG DEMAND assem. experience unnecessary. BIG DEMAND assem-
bling electronic devices. Sales handled by profesbling electronic devices. Sajes handied
sionals. Unusual business opportunity.

FREE: Complete illustrated literature
BARTA RE OO Bux 248
Walnut Creek. Calif 94597

ANTIQUE RADIO CLASSIFIED

 Free Sample! Antique Radio's Articles, Ads \& Classifieds.
 6-Month Trial: $\$ 15.1$-Yr: $\$ 27$ (\$40-1st Class). A.R.C., P.O. Box 802-L9, Carlisle, MA 01741

MABK V ELECTBONIGS, INC.

Competitive Pricing * Fast Shipping Since 1985
IN CA 1-800-521-MARK (orders only) OUTSIDE CA 1-800-423-FIVE (orders only) ORDER BY FAX (213) 888-6868 CATALOG \& INFORMATION (213) 888-8988 $\mathbf{\Delta}$ indicates the level of difficulty in the assembling of our Products. $\mathbf{\Delta}$ Beginner $\mathbf{\Delta} \mathbf{\Delta}$ intermediate

Your Natural Resource for Wid

Test/Measurement and Prototype Equipment

Jameco Solderless Breadboards

Jameco's long-lasting breadboards feature screen-printed color coordinates and are suitable for many kinds of prototyping and circuir design. Larger models feature a heavy-duty aluminum backing with voltage and grounding posts.

GoldStar 20MHz Dual Trace Oscilloscope

The perfect unit for today's testing and measurement needs! Features include a 6^{*} CRT display, and bandwidth from DC to 20 MHz . The GoldStar Oscilloscope comes with two 40 MHz probes, two fuses, power cord, operation manual, schematios and block and wiring diagram. It's lightweight and portable with a two-year warranty.

GS7020.
.$\$ 399.95$

BNC Cable Assemblies for GS7020

BNCl $\mathrm{BNC}(\mathrm{M})$ to $\mathrm{BNC}(\mathrm{M})$ RG58 A/U (39"L) $\$ 3.95$
BNC2 BNC(M) to Micro Hook RG174 39"L).............. 3.95
BNC3 BNC(M) to Macro Hook RG174 (39"L)............ 3.95

24 Hour Toll-Free Order Hotline 1-800-831-4242

Weller Soldering and Desoldering Stafions

- Temperature adjustable from 350° to $850^{\circ} \mathrm{F}$
- Zero voltage circuit protects sensitive components from damage
- Lighted on/off switch

WCC100 Soldering Station.... $\$ 89.95$

- 50 Watt Temperature Controlled Desoldering Station
- Desoldering head is temperature controlled to $800^{\circ} \mathrm{F}$
- Low maintenance vacuum system DS600 Desoldering Station.. $\$ 549.95$

Melex Digital Multimelers

- Handheld, high accuracy • AC/DC voltage, $A C / D C$ current, resistance, diodes, continuity, transistor hFE
- Manual ranging w/ overload protection
- Comes with probes, batteries, case and manual M3650 \& M4650 only:
- Also measures frequency and capacitance

M3800 3.5 Digit Multimeter $\$ 39.95$
M3610 3.5 Digit Multimeter $\$ 59.95$
M3650 3.5 Digir Multimeter w/Frequency \& Capacirance $\$ 74.95$
M4650 4.5 Digir w/Frequency \&C Capacitance \& Data Hold Switch......... $\$ 99.95$

24 Hour Toll-Free
Order Hotline! 24 Hour Toll-Free
Order Hotline!
$1 \cdot 800 \cdot 831-4242$

Jameco Logic Pulser

- Comparible with TTL, DTL, RTL., HTL. HNIL. MOS and CMOS ICs
- IM Ω Sync input impedance • Pulser mode output current: 10 mA - Square wave current outpur: $5 \mathrm{~mA} \cdot$ Audible tone
LP540.
.$\$ 16.95$

- Programs all current EPROMs in the 2716 to 27512 range plus the X2864 EEPROM - RS232 port - Software included

EPP.
$\$ 199.95$

Jameco Logic Prob

- Max Frequency 80 MHz • Minimum detectable pulse: $10 \mathrm{~ns} \cdot 120 \mathrm{~K} \Omega$ input impedance \cdot Max, supply voltage: $\pm 25 \mathrm{~V}$ - TTL threshold: (L.0) $+0.8 \mathrm{~V} \pm 0.1 \mathrm{~V}$, (Hi $+2.3 \mathrm{~V} \pm 0.2 \mathrm{~V} \cdot \mathrm{CMOS}$ threshold: (Lo) 3 VCC $\pm 10 \%$, (Hi) $70 \% \mathrm{VCC} \pm 10 \%$
MS104.
. $\$ 24$
UVP EPROM Erasen

Erases all EPROM's • Erases I chip in 15 minutes and 8 chips in 21 min - UV intensity: 6800 UW/CM ${ }^{2}$

DE4. \qquad

EPROMs - for your programming needs

Part No. Price	Part No. Price	Part No.
TMS2516......... \$4.25	2764-20............ $\$ 3.95$	272560 T
TMS2532-35......8.95	2764-25.............3.75	27256-15.
TMS2532A6.95	2764A-203.75	27256-20.
TMS2564...........5.95	2764A-253.19	27256-25.
TMS2716...........5.95	27C64-15...........3.95	27-256-15
1702A 3.95	27C64-25..........3.25	27-256-20
2708..................4.75	27128OTP.........3.49	27-256-25
2716..................3.39	27128-20............7.95	27512OTP
2716-1...............3.75	27128-25............7.75	27512-20.
27C164.25	27128A-15 4.95	27512-25.
2732..................4.95	27128A-204.49	27C512-15
2732A-204.49	27128A-253.75	27C512-20
2732A-253.49	27C128-15.........5.75	27C512-25
2732A-45 2.95	27C128-25.........7.95	27C010-15
27C32 4.75		68766-35.

- Partial Listing • Over 4000 Electronic and Computer Components in Stock!

election \& Competitive Prices

Computer Products and Electronic Components

semble Your Own Computer Kit!
 Jameco 16 MHz 80286 Compufer Kif

ilding your own computec provido you da better undestanding of componcens d thair functions
depth assembly instructions included ave your new computet assembled and aning in an evening, using common tools ftware included
rchase computer kits configured by neco or design your own

ades:

286-16 Mohectboard with UB RAM (expandable to 8MB 1-key cnhanced keyboard ulti I/O Card w/ controller shiba 1.44MB, 3.5° ppy disk dive by sized dektop case 0 Wate powet supply २DOS 5.0

41 diagnosic sofwart
816. \qquad

menitor and adapter otra

Jameco 4-Channel Switching Power Supply
+5VDC e 5.0A .5VDC e 1.0 A +12 VDC e 1.0 A -12 VDC e 1.0 A

- Microprocosor, mini-computer, terminal and process control applications - Input: $90-130 \mathrm{VAC}$ e $47-440 \mathrm{~Hz}$ - Size $6.25^{\circ} \mathrm{Lx} \times 3.88^{\circ} \mathrm{W} \times 1.5^{\prime \prime} \mathrm{H}$
- Weight: 1.25 lbs .
- Data induded

FCS604A \qquad . $\$ 44.95$

Zaison 56 Wafł Swiftching Power Supply

+5 VDC @ 4.5 A
$\begin{array}{ll}+12 \text { VDC } \\ -12 \text { VDC } & 1.4 A \\ 0.3 A\end{array}$ Limited Quantity +12 VDC @ 12 A

- Inpur: 115 VAC e $-47-440 \mathrm{~Hz}$
- Two 4 pin molex style connectors for voltage outpat
- Size: $6^{\circ} \mathrm{L} \times 4.5^{\circ} \mathrm{W} \times 2^{\circ} \mathrm{H}$
- Weight 1.5 lbs .

PS6141 \qquad $\$ 24.95$

Connecfors			IC Sockets			
$\begin{aligned} & \text { Part No. } \\ & \text { DB25P } \end{aligned}$	Description	Price	Low Profik		Wirc WroplGold) Lad $\geqslant 2$	
	Male, 25-pin	\$. 65	8LP	\$. 10	8WW	S. 49
DB25S	Femalc, 25-pin	. 75	14LP	. 11	14WW	. 69
DB25H	Hood	.39	16LP	. 12	16WW	. 79
DB25MH	Metal Hood	1.35	24 LP	. 19	24 WW	1.15
	LEDs		28LP	. 22	28WW	1.39
XC209R	T1. (Red)	\$.14	40LP	. 28	40WW	1.89
XC556G	T1 3/4. (Green)	. 16			Standard	
XC556R	T1 3/4. (Red)	. 12		and H	Plug Socket	
XC556Y	T1 3/4, (Yellow)	. 16			vailable	

24-Hour Toll-Free Order Hotline:

1•800•831-4242

Call or Write for a

FREE 90-Page 1992 Catalog!

\$30.00 Minimum Order - Data Sheets - 50c each

\& AMVEO
 ELECTRONIC COMPONENTS
 COMPUTER PRODUCTS

1355 Shoreway Road Belmont, CA 94002
FAX: $1 \cdot 800 \cdot 237-6948$
BBS Support: 415-637-9025

International Sales * Customer Service - Technical Assistance - Credit Department *-All Other Inquiries: 415-592-8097 • 7AM - 5PM P.S.T.

01992 Jaturnew $1 / 92$
CA Roidents Add 7.25\% . 7.75% or 8.25% Siles Tax
-aparirr Shipping, landling and insurance are
Expreir seditional.

Temes Prices subjex to clunge without notice ltema subject to aviilability and prior sule. Complete lat of temviwarrantics is available upon reques.

[^1]CABLE KINGDOM!

```
*JEROLD* *OAK* *HAMLIN*
    *ZENITH* *PIONEER*
    *SCIENTIFIC ATLANTA*
```

IN STOCK
6 MONTH WARRANTY! WE SHIP COD! ABSOLTLEY LOWEST
WHOLESALE/RETAIL PRICES! ******FREE CATALOQ*******
J.P. VIDEO

1470 OLD COUNTRY RD SUITE 315
PLAINVIEW, NY 11803 NO N.Y. SALES
CALL NOW! 1 (800) 950-9145

WANTED

INVENTIONS/ new products/ideas wanted: call TLCI for free information/inventors newsletter. 1 (800) 468-7200 24 hours/day - USACanada.

INVENTORS: We submit ideas to industry. Find out what we can do for you. 1 (800) 288-IDEA.
INVENTORS! Your first step is important. For free advice, call ADVANCED PATENT SERVICES, Washington, DC, 1 (800) 458-0352.
INVENTORS! Confused? Need help? Call IMPAC for free information kit. USA/CANADA: 1 (800) 225-5800 (24 hours!).

EDUCATION \& INSTRUCTION

F.C.C. Commercial General Radiotelephone IIcense. Electronics home study. Fast, inexpensive! "Free" details. COMMAND, D-176, Box 2824, San Francisco, CA 94126.

COMPLETE course in electronic engineering. Eight volumes. Includes all necessary math and physics. Free brochure. BANNER TECHNICAL BOOKS, 1203 Grant Avenue, Rockford, IL 61103.

> CABLE TV DESCRAMBLERS * CONVERTERS \star and ACCESSORIES. shinemorar あovinem

PANASONIC, JERROLD, OAK PIONEER, SCIENTIFIC ATLANTA AND MORE. LOWEST PRICES. FREE CATALOG. CABLE READY COMPANY
(800) 234-1006

THE ELECTRONIC GOLDMINE

BATIERY POWERED ULTRAVIOLET MINERALIGHT LAMP UVG-4 SHORT WAVE TYPE

G812 $\$ 31.95$

CIRCLE 178 ON FREE INFORMATION CARD

BE a recording engineer; Train at home for high paying - exciting careers. Free information. AU DIO INSTITUTE, 2258-A Union St., Suite K, San Francisco, CA 94123.

VCR tapes by college instructor covering electronic topics. Send for free demo \$3.50 P\&H O.C.S., PO 292, Fort Mill, SC 29715.

4 ELECTECH 4
 CABLE T.V. DESCRAMBLERS
 All quality brand names
 All fully guaranteed - All the time
 Knowledgeable Sales Service Department
 FOR FREE CATALOG 800-253-0099

BEST BY MAIL
 Rates: Write National, Box 5, Sarasota, FL 34230 OF INTEREST TO ALL

50% CASH DISCOUNT at over 1,000 select Holiday Inn Hilton Hotels, Best Western \& More! Information \$1.0 DISCOUNT TRAVEL SERVICE, 662 Franklin Ave Garden City, NY 11530, Suite 421 .

MONEYMAKING OPPORTUNITIES
WE PAY UP to $\$ 300.00$ weekly Woodburning Pictur Frames. Everything supplied. No experience or sellin Bay Frame, PO Box 1588 -(RE), Jackson, TN 38302 .

PERSONAL-MISCELLANEOUS
SINGLES! MEET OTHER Fun Exciting People Call IN TRODUCTIONS $1 \cdot 900-776-4225$. $\$ 2 / \mathrm{Min}$.

PAY TV AND SATELLITE DESCRAMBLING
 ALL NEW
 1992 EDITION
 ALLNEW
 Ir's up to the minute. All new update on cable, wireless and satellife. Turn-ons, bypasses, circuits, chipping, bullets, bags, Dectec, Lberty One, ECM's, Data Reacers, prooramming, and iots more Our best yet Only $\$ 15$. Other (al dif. Reacers, prognamming. and lots more. Our best yet Only $\$ 15.50$. Other (al dar$\$ 9.95$. Satellite systems under $\$ 600 \$ 12.95$. Ary $3 \$ 29.95$ or $6 / \$ 49.95$. Video $\$ 29.95$. Scrambling News Monthly $\$ 24.95 \mathrm{yy}$. Sample $\$ 3$. Al new catalog $\$ 1$. Shipping costs included.
 Buttalo, NY, 14216. Voice/Fax (716) 874-2038
 COMPUTER CONNECTIONS

continued from page 85
adding some SRAM or DRAMthat's it. Who wants it? In the era o $\$ 2000386$ boxes and $\$ 3000486$ boxes, who cares about a CGA-leve 8086? Makers of laptop and hand held devices like HP's 95LX. That's the theory, anyway. It may be tha we're about to witness an explosior of PC Gadgets, miniature DOS-like devices that surpass calculators anc the Sharp Wizard type of device. The other line consists of 386 clones tha provide 10-15\% better performance Both lines incorporate a new tech nology called SuperState that pro vides an interrupt level higher than al normal IRQ's and the NMI, and which when entered gives a totally new ad dress space for executing code. Su perState could be used to implemen power management functions, to em ulate missing instructions (e.g., $28 €$
continued on page 96

EASY ORDER -800-582-4044

TRIPP LITE - PRECISION REGULATED DC POWER SUPPLIES

 mplete Line of DC Power Supplies to Convert 120 VAC to $13.8 \mathrm{VDC} \pm 0.5 \mathrm{VDC}$.
andard Features Include:

lid state integrated circuit provides excellent regulation tput voltage maintained up to 95% of no load value gh quality filtering for low noise operation
avy duty power transformer for complete line isolation Off indicator light and rugged on/off switch on faceplate onductor grounded cord on 10 Amp and larger models rrent limiting electronic folcback for auto overcurrent protection

Lite DC Power Supplies Are Designed For Reliability and Superior Performance.
$\frac{1 e r}{7.5}$

Fusing	Voltage		
ernal 0.1 Volt Max...... $3.125 \times 4.75 \times 8.25$			
assis Moun			
Chassis Mount 0.15 Volt Max..... $4.5 \times 6.625 \times 7.62510 \mathrm{lbs}$.			
Chassis Mount0.15 Volt Max....... $4.75 \times 7.5 \times 8.2513 \mathrm{lbs}$.			
Chassis Mount0.15 Volt Max.5.125 $\times 12.5 \times 10.5 \ldots \ldots20 \mathrm{lbs}$.			
Chassis Mount0.15 Volt Max.......7.25 $\times 12.5 \times 10 \ldots \ldots . . .26 \mathrm{lbs}$.			

uty (50% Duty Cycle)

PR25

tures

lor coordinates for easy recognition ertion wire: $20-29$ AWG ($0.3-0.8 \mathrm{~mm}$) er 10,000 insertion cycles septs all standard components

SB1660

SB3220

MICROS	DRAMS		
Order \# Price	Order \#	Price	Desc.
6242............. 8.95	MK4027N2		4×1
6502 2.95	4116-20	. 85.	16x1
6522A 3.75	4416-12	2.95	.16x4
6821 1.75	4164-10	1.95.	.64×1
6845 _-........ 2.45	4164-15	1.55.	.64×1
8080A 2.75	4164-20	1.25.	64×1
8085A 2.95	41464-12	2.75.	64×4
8086............. 4.45	41256-80	2.75.	256x1
8088 4.25	41256-12	2.15.	256x1
8237 A5 4.15	51258-80	4.95	256x1
8250............. 5.75	514256-10	6.95.	256x4
8251A 2.25	514258-80	9.95.	256×4
8253-5.......... 2.25	511000-80	7.25.	. $1 \mathrm{Mx1}$
8255A5 2.75	511000-10	6.95.	. $1 \mathrm{M} \times 1$
8275........... 18.95	511001-80	8.25	1M×1
STATIC RAMS		EPROMS	
Order \# Price	Order \#	Price	Prog.
2101.............. 1.65	2708	4.75.	25 V
2114L25 1.39	2716	3.45	25V
2147-3 3.75	2732	3.95	25V
6116LP3 2.75	2732A25	3.45	21V
6116-3 _......... 2.25	2732B45	4.25	12.5 V
6264LP10 4.95	2764-25	3.75	21V
6264LP15 3.95	2764A25	3.25	12.5V
6264-104.75	27C64A15	3.95	12.5V
6264-153.75	27128A25	3.95	.12.5V
62256LP106.75	27256-25	4.75	12.5V
62256LP156.25	27C512-15	6.95	12.5V
628128LP8 ... 34.95	27C010-15	9.95	12.5 V
$628128 L P 1032.95$	27C020-15	24.95	12.5 V

ACTIVE COMPONENTS

Order \# Price Order \# Price Description MAX232CPE..4.55 CA3161E 1.95Decoder Driver LM311N 49 CA3162E 6.25..............Converter LM324N 35 78L05 035 ...5V Pos. Reg. TO-92 LM339N 39 7805K $\quad 1.25$.... 5 VV Pos. Reg. TO-3

Price	Price $10+$	Dimensions (in.) $\mathbf{L} \times \mathbf{W} \times \mathbf{H}$	Dist. Strips	Dist. Points	Terminal Strips	Terminal Points	Binding Posts	
$\mathbf{2 0 0}$	2.99	2.49	$6.5 \times 0.37 \times 0.4$	2	100×2	0	0	0
400	4.89	4.39	$3.3 \times 2.2 \times 0.4$	2	100	1	300	0
630	5.45	4.95	$6.5 \times 1.4 \times 0.4$	0	0	1	630	0
830	6.49	5.99	$6.5 \times 2.2 \times 0.4$	2	200	1	630	0
1360	12.49	11.99	$8.5 \times 3.9 \times 1.2$	1	100	2	1,260	2
1660	17.45	16.95	$8.5 \times 5.1 \times 1.2$	4	400	2	1,260	3
2390	22.49	21.49	$9.1 \times 6.9 \times 1.2$	5	500	3	1,890	4
3220	31.49	30.49	$9.5 \times 8.3 \times 1.2$	7	700	4	2,520	4

MEMORY MODULES-SIMMS

ZILOG DATABOOKS*

J CPU Technical Manual

338 page manual contains the architecture, pin description, timing, instruction set, instruction ription, interupt fesponse and hardware/sofware implementation examples of the Z80 CPU.
\qquad 9.95 Z80 CPU Technical Manual

Weight: 1 lb .

elligent Peripheral Controllers

- 700 pages of data sheets, application notes and technical information on Zilog's intelligent aheral controllers. The part numbers contained in this book are $28400, \mathrm{Z} 4 \mathrm{C} 00, \mathrm{Z} 4 \mathrm{CO} 01$. 10/C10, Z8420/C20, Z8430/C30, Z8440/1/2/4, Z84C40/1/2/3/4, Z84C50, Z8470, Z84C90, 211/C11, Z84013/15, Z84C13 C15, Z80180, Z80181 and Z280.
er \# Z2480 13.95 Intelligent Peripheral Controllers
Weight: 2 lbs.

tacom ICs

- 700 pages of data sheets and other tectrical information on Zilog's Data Communications ICs. numbers contained in this boor are the Z16C3031/333550, Z5380, Z85230, Z80C30, Z85C30, 30 , Z8530, Z80181, Z84013, Z84015, Z84C13, Z84C15, Z8440, Z84C40 and Z85C80. Also ded are application notes.
er \#Z2503 13.95 Datacom ICs
Weight: 2 lbs .

zrocontrollers

' 1300 pages of data sheots, application notes and technical information on Zilog's microcontrollers. part numbers contained in this book are Z8600/01/02/03/04/11/12/13/71/81/82/91. $10 / 01 / 20 / 22$ Z86C00/C06/C08/C09/C10/C12/C19/C20/C21/C27/C30/C40/C50/C61/C62/C89/C90/ C93/C94/C96/C97, Z86E08/E19/E21/E30/E40, Z88C00, Z86127, Z86128, Z765A, Z5380 and >80
er \# Z8275 16.95 Microcontrollers
Weight: 3 lbs.

Order \#	Price	Organization	Speed
256x9-80	19.95	$262,144 \times 9$	80ns
1×9-80	57.00	1,048,576x9	80ns
4×9-80	210.00	$4,194,304 \times 9$	80ns

VISA
2917 Bayview Drive Fremont, CA 94538
Easy Order: 1-800-582-4044 Easy Fax: 1-800-582-1255 International Fax: 1-510-770-2346 Customer Service: $1-510-770-2345$ Monday-Friday, 7 om - 5 pm (PST)/ $10 \mathrm{em}-8 \mathrm{pm}$ (EST)
\checkmark COD-No personal checks, US funds ($\$ 5.00$ Surcharge)
\checkmark USPS \checkmark UPS \checkmark Federal Express \checkmark Airborne Add 5\% of total for shipping UPS Ground ($\$ 3.00$ min.). Actual shipping charges based on weight. Call or write today for your free copy of our catelog.

ALL ELECTRONICS
P.O. Box 567 • Van Nuys, CA 91408

20 AMP RFIIEMI FILTER
Corcom* 2086
20 amp RFV/EMI general purpose common-mode filter. Controls line-to-ground noise. Small size. low leakage. $3.46^{\circ} \times 1.16^{-} \times 2.81^{*}$
 UL and CSA listed. CAT\# RFI-201 $\$ 8.50$ each

4PDT - 24 Vdc RELAY

24 Vdc, 650 ohm coil - 3 amp contacts Standard 14 pin (ICE CUBE) style. Plastic dust cover. Size: $11 / 4^{*} X 13 / 4^{*}$ $\times 7 / 8^{-}$CAT* 4PRLY-24N $\$ 4.00$ each

HIGHEST QUALITY METAL CASSETIES (ERASED)

Premium quality metal tape in C- 60 cassettes (30 min. or more per side). One of the finest "brand-name" tapes on the market, in durable, clear plastic
 transport mechanisms. Recorded and bulk erased, the record-protect tabs have been removed and therefore, need to be taped over to terecord. Audiophiles will appreciate the wide dynamic range α this tape. If your cassette deck has a "metal" setting you will hear the difference. A real bargain! 60 min. tape - CAT\# C-600 M $\$ 1.25$ each -10 for $\$ 10.00$

CASSETTE

STORAGE CASE Black, unbreakable plastic audio cassette storage case. CAT\# CBOX 5 for $\$ 1.00$

100 for $\$ 15.00$

HEAT SINK COMPOUND

GC Electronics \# 10-8109 For effective transler of heat between cormponents and heat sinks. Z9 sllicone heat (1) Sracoue sink compound.
CAT* HSC-1 $\$ 2.00$ per $10 z$ tube

OPTO SENSOR

TRW/Optron \# OPB5447-2 IR emitter/sensor pair in Rectangular package with 28° color coded leads.
CAT\# OSR-4 2 for $\$ 1.00$

WALL TRANSFORMER

12 Vdc 500 ms.
2.1 mm D.C. power plug with center negative. White case. CAT* DCTX-125W $\$ 4.50$ each $12 \mathrm{Vdc}, 200 \mathrm{ma}$.
2.1 mm D.C. power plug with center negative. CAT* DCTX- 122 \$3.00 each

PHOTORESISTOR

1,000 ohms bright light. 16 K ohms dark. 0.182° dia. X 08^{*} high. $0.18^{\prime \prime}$ long leads. CAT\# PRE-7 2 for $\$ 1.00$
100 for $\$ 45.00 \cdot 1000$ for $\$ 400.00$
TOLL FREE ORDER LINES 1-800-826-5432
CHARAE OHDERS to Vhan, Mastorcard or Dhocovor
TERMS: Minimum order \$10.00. Shipping and handling for the 48 continental U.S.A. $\$ 3.50$ per order. All others including AK, HI, PR or Canada must pay full shipping. All orders delivered in CALIFORNIA must include state sales tax ($71 / 4 \%, 71 / 2 \%, 73 / 4 \%, 81 / 4 \%$) Quantities Limited. NO C.O.D. Prices subiect to change whout notice. Call or Write For Our FREE 64 Page Catalog (Outside The U.S.A. Send \$2.00 Postage) ALL ELECTRONICS CORP.
P.O. Box $567 \cdot$ Van Nuys, CA $\cdot 91408$

Shortwave Listening Guidebook

by Harry Helms

The world is talking on shortwave radio, and here's the book that tells you how to listen in! In direct, nontechnical language, Harry explains how to get the most from your shortwave radio. Its 320 heavily illustrated pages are filled with practical advice on:

- antennas
- when and where to tune
- selecting the right radio for you - accessories
- reception techniques

Learn how to hear the BBC, Radio Moscow, ham radio operators, ships at sea, even Air Force One! Includes hundreds of frequencies for stations around the world and the times you can hear them.

Only $\$ 16.95$ plus $\$ 3.00$ shipping (CA residents please include sales tax). 7128 Miramar Road Suite 15L, San Diego, CA 92121

All Jerrold, Oak. Hamlin, Zenith, Scientific Atlanta. Magnavox and all specialized cable equipment available for shipment within 24 hours. For fast service MC/VISA or C.O.D. telephone orders accepted. 60 Day Guarantee (Quantity Discounts). Send self-addressed Stamped envelope.

1-800-232-5017

C.O.D. ORDERS ACCEPTED
CABLE-TRONICS, INC.
1304 E. Algonquin Road Suite 501 Algonquin, Illinois 60102

EXPHRISE

Does Your Heart Good.
() American Heart Association

MONITOR TESTER

continued from page 49

16 by IC5 to produce a horizonta sync of 21.94 kHz .
Vertical sync is generated by di viding the horizontal sync by $6<$ at IC8's qB output (pin 10). The gI output of IC9 connects back to it: own cle input via IC6 pins 6 anc 7 causing IC9 to divide by 6 , for : net division of 384 . That gives us a vertical sync of 57.14 Hz at IC9: ga output. That ga output is con nected to IC2-e pin 11, which is configured as a one-shot, anc outputs a $60-\mathrm{mic}$ rosecond nega tive pulse to IC7 pin 13. The pulse is output at pin 12 of IC 7 which is connected to pin 9 of connector J 1 . Switch S3 routes 351.08 kHz to the low-byte RGB inputs of ar EGA monitor. That causes the monitor to display a pseudc three-dimensional pattern to dis. play on the monitor.
As a few final notes, VGA RGE inputs are 75 -ohm impedance. Resistors R7-R9 reduce the amplitude of the color signals to 0.5 volt p-p. 400 -line operation is produced by making horizontal sync negative polarity and vertical sync positive. EGA monitors switch from Mode 2 (enhanced) to Mode 1 by changing the polarity of vertical sync; in Mode 1 it's positive, in Mode 2, it's negative.

Construction

The use of perforated construction board and wire-wrap is recommended for this project. Try to keep the TTL clock oscillators (OSC1 and OSC2) as close to IC6 and IC7 as possible. Also, decouple all IC's and the oscillators with the $0.01 \mu \mathrm{~F}$ ceramic disc capacitors as shown in the schematic in Fig. 1. (You can solder them directly to the V_{CC} and ground wire-wrap pins).
This project requires +5 -volts to operate. If you've already got a suitable power supply you can use it. Otherwise, Fig. 2 shows a suitable one for the project.
Once the circuitry is completed, you should put the assembled boards in a metal project box and tie earth ground to the case. Figure 3 shows the author's completed prototype.

STOCK \#	MFG.	WAVE. LENGTH	OUTPUT POWER	OPER. CURR.	OPER. VOLT.	PRICE
LS9220	TOSHIBA	660 nm	3 mW	85 mA	2.5 v	129.99
LS9200	TOSHIBA	670 nm	3 mW	85 mA	2.3v	49.99
LS9201	TOSHIBA	670 nm	5 mW	80 mA	2.4 v	59.99
LS9211	TOSHIBA	670 nm	5 mW	50 mA	2.3 v	69.99
LS9215	TOSHIBA	670 nm	10 mW	45 mA	2.4v	109.99
LS3200	NEC	670 nm	3 mW	85 mA	2.2 v	79.99
LS022	SHARP	780 nm	5 mW	65 mA	1.75 v	19.99

LASER TUBES

Dynamic $A, A M S$						EPROMS				
STOCK \#	DESC.	SPEED	1-24	25-99	$100+$	STOCK \#	SPEED	1-24	25-99	$100+$
41256-60	$256 \mathrm{~K} \times 1$	60 ns	2.59	2.46	2.21	2716	450 ns	3.29	3.13	2.82
41256-80	$256 \mathrm{~K} \times 1$	80 ns	2.19	2.08	1.87	2732	450 ns	4.19	3.98	3.58
41256-100	$256 \mathrm{~K} \times 1$	100 ns	1.99	1.89	1.70	2732A	250 ns	3.29	3.13	2.82
41256-120	$256 \mathrm{~K} \times 1$	120 ns	1.89	1.80	1.62	2764	250 ns	3.49	3.32	2.99
41256-150	$256 \mathrm{~K} \times 1$	150 ns	1.79	1.70	1.53	2764A	250 ns	3.09	2.94	2.65
511000-70	1 meg x 1	70 ns	5.49	5.22	4.70	27128	250 ns	4.79	4.55	4.10
511000-80	1 meg x 1	80 ns	5.29	5.03	4.53	27 C 128	250 ns	4.79	4.55	4.10
511000-10	1 meg $\times 1$	100 ns	5.09	4.84	4.36	27256	250 ns	4.59	4.36	3.92
514256-70	$256 \mathrm{~K} \times 4$	70 ns	6.49	6.17	5.55	27 C 256	250 ns	4.29	4.08	3.67
514256-80	$256 \mathrm{~K} \times 4$	80 ns	6.09	5.79	5.21	27512	250 ns	5.49	5.22	4.70
514256-10	$256 \mathrm{~K} \times 4$	100 ns	5.69	5.41	4.87	$27 \mathrm{CS12}$	250 ns	5.49	5.22	4.70
541000-80	4 meg $x 1$	80 ns	26.99	25.64	23.08	$27 \mathrm{C1024}$	200 ns	10.99	10.44	9.40
544256-80	1 meg $\times 4$	80 ns	31.99	30.39	27.35	27 C 2048	200 ns	21.99	20.89	18.80

STOCK \#	WAVELENGTH	OUTPUT POWER (MIN.)	OUTPUT POWER (MAX.)	BEAM DIAM.	BEAM DIVERG.	POLARIZATION	OPERATING VOLTAGE	OPER. CURR.	FIRING VOLT.	MIN. SERIES RES.	SIZE DXL (IN MM)	WT. (GM.)	BRH CL .	$\begin{gathered} \text { PRICE } \\ 1-9 \end{gathered}$	$10+$
LT7770	543 nm (Green)	0.5 mW	1.0 mW	0.71 mm	$\leq 1.2 \mathrm{mrad}$	random	$1750 \mathrm{v} \div 110 \mathrm{v}$	6.5 mA	$\leq 8 \mathrm{kV}$	81k Ω	37×350	200	II	799.99	749.99
LT7650	632.8 nmm (Red)	0.5 mW	2.0 mW	0.49 mm	$\leq 1.7 \mathrm{mrad}$	$>100: 1$	$1000 \mathrm{v} \div 100 \mathrm{v}$	3.5 mA	< 7 kV	$68 \mathrm{k} \Omega$	25×146	70	Ita	529.99	479.99
LT7656	632.8 nm (Red)	0.5 mW	2.0 mW	0.34 mm	$\leq 2.4 \mathrm{mrad}$	random	$1050 \mathrm{v} \pm 100 \mathrm{v}$	2.8 mA	$\leq 8 \mathrm{kV}$	82 k п	22.5×118	60	Ita	134.99	124.99
LT7655	632.8 nm (Red)	0.5 mW	2.0 mW	0.49 mm	$\leq 1.7 \mathrm{mrad}$	random	$1000 \mathrm{v} \pm 100 \mathrm{v}$	3.5 mA	$\leq 7 \mathrm{kV}$	$68 \mathrm{k} \Omega$	25×150	70	IIIa	144.99	134.99
LT7655S	632.8 nm (Red)	1.0 mW	2.0 mW	0.49 mm	$\leq 1.7 \mathrm{mrad}$	random	$1000 \mathrm{v} \pm 100 \mathrm{v}$	3.5 mA	$\leq 7 \mathrm{kV}$	$68 \mathrm{k} \Omega$	25×150	70	IIta	159.99	144.99
LT7632	632.8 nm (Red)	1.2 mW	3.0 mW	0.61 mm	$\leq 3.0 \mathrm{mrad}$	random	$1300 \mathrm{v} \div 100 \mathrm{v}$	3.5 mA	$\leq 7 \mathrm{kV}$	$81 \mathrm{k} \Omega$	20×210	70	IIfa	249.99	229.99
LT7621S	632.8 nm (Red)	2.0 mW	5.0 mW	0.75 mm	$\leq 1.2 \mathrm{mrad}$	random	$1300 \mathrm{v} \div 100 \mathrm{v}$	5.0 mA	$\leq 7 \mathrm{kV}$	$68 \mathrm{k} \Omega$	30×255	140	Ita	204.99	191.99
LT7634	632.8 nm (Red)	2.0 mWW	5.0 mW	0.75 mm	$\leq 1.2 \mathrm{mrad}$	$>500: 1$	$1300 \mathrm{v} \div 100 \mathrm{v}$	5.0 mA	$\leq 7 \mathrm{kV}$	68 k n	30×255	140	IIIa	209.99	194.99
LT7621MM	632.8 nm (Red)	5.0 mW	15 mW	1.0 mm	$\leq 2.5 \mathrm{mrad}$	random	$1250 \mathrm{v} \pm 100 \mathrm{v}$	6.5 mA	$\leq 7 \mathrm{kV}$	68 k ת	30×255	140	1 IIb	359.99	334.99
LT7627	632.8 nm (Red)	5.0 mW	15 mW	0.80 mm	$\leq 1.1 \mathrm{mrad}$	random	$1900 \mathrm{v} \div 100 \mathrm{v}$	6.5 mA	$\leq 8 \mathrm{kV}$	81 k ת	37×350	200	1 IIb	369.99	344.99
LT7628	632.8 nm (Red)	5.0 mW	15 mW	0.80 mm	$\leq 1.1 \mathrm{mrad}$	$>500: 1$	$1900 \mathrm{v} \div 100 \mathrm{v}$	6.5 mA	$\leq 8 \mathrm{kV}$	81 k П	37×350	200	111 b	389.99	364.99
LT7627MM	632.8 nm (Red)	10 mW	30 mW	1.2 mm	$\leq 4.0 \mathrm{mrad}$	random	$1750 \mathrm{v} \pm 100 \mathrm{v}$	6.5 mA	$\leq 8 \mathrm{kV}$	81 k п	37×350	200	111 b	479.99	444.99

ORDER LINE - (800) 824-3432
INTERNATIONAL ORDERS - (818) 341-8833
FAX ORDERS - (818) 998-7975

- 15.00 MINIMUM ORDER
- UPS BLUE, RED \& FEDERAL EXPRESS SHIPPING AVAILABLE
- OPEN MON-FRI 9:00 AM - 6:00 PM

SAT 10:00 AM - 3:00 PM PDT

- CA RESIDENTS ADD 7% SALES TAX
- CALL FOR QUANTITY DISCOUNTS
- CALL FOR FREE CATALOG (FOR 1ST CLASS DELIVERY OR CATALOGS DELIVERED OUTSIDE THE U.S. - SEND $\$ 2.00$)
- WE CARRY A COMPLETE LINE OF ELECTRONIC COMPONENTS
continued from page 92
or even 386 op codes), to perform multitasking, and all sorts of other things creative designers will enjoy thinking up.

Product Watch

If you've bitten the Windows bug. you've probably heard about Norton's Desktop for Windows (NDW), an everything-including-the-kitchensink collection of Win3 utilities. If that sort of overblown approach turns you off, check out SideBar (Fig. 2). This is quite simply the most elegant Windows program l've seen in four or five years of Windows watching. As the name suggests. SideBar places a bar along the side of your screen; this bar gives you the best of both DOS and Windows. At the top, the bar contains several pushbuttons for arranging icons on your desktop. Beneath the buttons is a text box for entering DOS commands (dir, cd, md, etc.). SideBar interprets your commands itself; it does not run a copy of COMMAND.COM. The remainder of the space is occupied by a set of drive icons, file/directory listings, or both. The dual display can locate two file windows horizontally or vertically. You can select one or more files from one window and drag them to the other. The same approach works for copying, moving, deleting, renaming, changing attributes, associating (documents to applications), and placing icons on SideBar to execute directly.

SideBar can replace Windows' Program Manager, File Manager, or both. It provides a text-menu approach to launching applications, that while not as visual as NDW, is really elegant and easy to use.

SideBar is extremely resource aware and efficient. You can force it to unload itself and thereby save memory when running applications: just double-click on the background to bring SideBar back. The documentation is quite well done; all product packaging is made from recycled materials.

I really like some of NDW's utilities. But for the time being, I'm going to use SideBar as my main Windows

ADVERTISING INDEX
RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.

Science PROBE! - the only magazine devoted entirely to Amateur Scientists! If you are fascinated by science in all its many forms... if you can't stay away from a microscope, telescope, calipers, or test tube - we invite you to share the wonders in every issue of Science PROBE! You will join a community of Amateur and Student Scientists who enthusiastically seek scientific knowledge or follow scientific pursuits for their own sakes and not merely as a profession.

Obtain your next issue of Science PROBE! by visiting a quality Newsstand, Convenience Store, or Supermarket or by reserving your personal copy through the mail by completing the coupon below.

From your very first issue of Science PROBE! you will be involved in a world of scientific facts, experiments, and studies pursued by amateur scientists who are university students, investors, academicians, engineers, or office workers, salesmen, farmers-whose quest is to probe into the mysteries of science and reveal them to all.

Plan to become a Science PROBE! reader!

Welcome to.

SCIENCE PROBE!

The Amateur Scientist's Journal

Embark on an irresistible new journey into the realm of mystery, challenge, and exploration! The perfect magazine for the budding scientist, the serious amateur, the professional who would like to relax, and those who simply want to gaze at the stars.

Articles to appear in upcoming issues of Science PROBE! are:

> How an Amateur Mapped the Milky Way Make your own Seismometer Operate a Solar-powered Weather Station Grow Crystals Automatically Experiment with a Saltwater Aquarium How to Keep a Science Notebook

If you're fascinated by science in all its many forms, if you are compelled to experiment and explore, then Science PROBE! is your kind of magazine!

Science PROBE!

7RA29

$500-\mathrm{B}$ Bi-County Boulevard

Farmingdale, NY 11735
Please forward my copy of Science PROBE! as soon as it comes off the press. I am enclosing $\$ 3.50-$ U.S.A. ($\$ 4.23$-Canada-includes G.S.T.) plus $\$ 1.00$ for shipping and handling. Better still, please enroll me as a subscriber and send the next four (4) quarterly issues of Science Probe. I am enclosing $\$ 9.95-$ U.S.A. (Canada: $\$ 16.00$-includes G.S.T.)
\square Next Issue Only $\quad \square$ Next Four Issues (1 Year)
Offers valid in the U.S.A. and Canada only. No foreign orders.
Name
Address
City \quad State
All Orders payable in U.S.A. Funds only.

WHAT YOUR TOOLS SAY ABOUT YOU.

"Ultimate Professional"

Here's the newest family member: the 60 MHz Tek 224. It's as rugged, reliable and easy to use as the rest of the 220 Series-and extended bandwidth makes it the logical choice for computer service professionals.

"Ace Troubleshooter"

The Tek 222 is everything a service scope ought to be. Lightweight. Rugged. Fully programmable. Floatable to $\pm 400 \mathrm{~V}$. Two channels, 10 MHz , Auto Setup and Auto Trigger make it easy finding trouble-fast.

They're just $41 / 2$ pounds. U.L. certified. And start at $\$ 2450.220$ Series handheld oscilloscopes-all with Tek's exclusive IsolatedChannel ${ }^{\text {TM }}$ architecture - are the service tools the professionals use. Theres one with you written all over it. To order, contact your Tek representative or distributor. Or just call Tek direct: 1-800-426-2200

[^0]: As a service to readers, RADIO-ELECTRONICS publishes available plans or information relating to newsworthy products, techniques and scientific and technological developments. Because of possible variances in the quality and condition of materials and workmanship used by readers, RADIO-ELECTRONICS disclaims any responsibility for the safe and proper functioning of reader-built projects based upon or from plans or information published in this magazine.

 Since some of the equipment and circuitry described in RADIO-ELECTRONICS may relate to or be covered by U.S. patents, RADIO-ELECTRONICS disclaims any liability for the infringement of such patents by the making, using, or selling of any such equipment or circuitry, and suggests that anyone interested in such projects consult a patent attorney.

 RADIO-ELECTRONICS, OSSNO033-7862) January 1992. Published monthly by Gernsback Publications, Inc., 500-8B3-County Boulevard. Farmingdale, NY 11735 Second-Class Postage paid at Farmingdale, NY and additional mailing offices. Second-Class mail registration No. R125166280, authorized at Toronto. Canada. One-year subscription rate U.S.A and possessions \$17.97. Canada $\$ 25.65$ Gincludes G. S.I. Canadian Goods and Services Tax Registration No. R125166280), all other countries \$26.97. All subscription orders payable in U.SA. funds only, via intemational postal money order or check drawn on a U.S.A. bank. Single copies \$2.95. © 1992 by Gernsback Publications, Inc. All rights reserved. Printed in U.S.A.

 POSTMASTER: Please send address changes to RADIO-ELECTRONICS, Subscription Dept., Box 55115, Boulder, CO 80321-5115.

 A stamped self-addressed envelope must accompany all submitted manuscripts and/or artwork or photographs if their return is desired should they be rejected. We disclaim any responsibility for the loss or damage of manuscripts and/or artwork or photographs while in our possession or otherwise.

[^1]: -Additional components available

