PROTECTUR
and prevent damage firom surges and transients

Add an
ILTHISTH-CULRRENT
LDXITER
to your sensitive
electiontic equijpueni
Now you ceal
TALK OW A
LCMIT BEAN
With eut exapeltulelnial

hew to put the 5f5 TIMER IC to work in practical circuits

How improvements in COMPUTER MOCTIOR

TEGHINLOGY

have made PC's better than ever!

BUILD THIS CLITTER CLOBE

The Fluke 79: More Of A Good Thing

More high-performance features. More advanced measurement capabilities. More of the vital information you need to troubleshoot even the toughest problems - with both ana\log and digital displays.

Meet the latest, greatest member of our best selling 70 Series II family - the new Fluke 79 digital multimeter.

It picks up where the original family left off. In fact, it's a quantum leap forward - in performance, value and affordability.

It's got the features you'd expect from Fluke. Including high resolution. Fast autoranging. Patented, automatic Touch Hold ${ }^{3}$. A quick continuity beeper. Diode test. Automatic selftest. Battery-conserving sleep mode. And it's just as rugged and reliable as the rest of the 70 Series II family. Easy to operate, too - with one hand.

And thanks to the Fluke 79's proprietary new integrated circuit technology, that's only the beginning. When it comes to zeroing in on tough electrical problems, the Fluke 79 leaves the competition behind:

Hz

Frequency: The Fluke 79's buitt-in frequency counter lets you measure from below 1 Hz to over 20 kHz . And while you view frequency on the digital display, the analog bar graph shows you AC voltage. So you can see if potentially hazardous voltage is present.

Fast 63 -segment analog bar graph: The Fluke 79 's bargraph moves as fast as the eye can see, updating at a rate of 40 times per second to simulate the functionality of an analog needle. You get the high speed and high resolution you need to detect peaking, nulling and trending.

Capacitance: No need to carry a separate dedicated capacitance tester; the Fluke 79 measures capacitance from 10 pF to $9999 \mu \mathrm{~F}$.

Actual Size

Lo-Ohms range: Our proprietary Lo-Ohms function lets you measure resistance as low as 0.01 ohms. High noise rejection and a test lead Zero Calibration function make the Fluke 79 ideal for detecting small resistance changes.

SMOOTHING

Smoothing ${ }^{\text {TM }}$: Our exclusive new Smoothing mode gives you a stable digital readout for unstable signals - by displaying the running average of eight readings. No more jitter or "digit rattle" due to noisy signals.

Get a good thing going: To put more meter to work for you - at a price that works for you, too - head for you nearest Fluke distributor. For the name of your nearest distributor, or for more product information, call 1-800-87-FLUKE.

The Fluke 79 comes with a yellow holster and patented Flex-Stand ${ }^{13}$ - easy to hang from a door or pipe, clip onto a belt or tool kit, or stand at virtually any viewing angle. There's even storage space for test leads.

Fluke 79 Series II
siss
4000 Count Dipital Display (9999 in Hz , capacitance, and Lo-Ohms)
63-segment Analog Bar Graph
0.3% Basic DC Voltage Accuracy
Autornatic Touch Hold
Diode Test, Audible Continuity Beeper
Autoranging, Manual Ranging
Holster with Flex-Stand
Frequency Counter to over 20 kHz
Capacitance, 10 pF to 9999 䨗
Lo.Ohms Range with Zero Calibration
Smoothing
700 Hours Battery Life (alkaline)
3-Year Warranty

- Suggested US. list price

FLUKE AND PHILIPS THE T\&M ALLIANCE

December 1992

Vol. 63 No. 12

0.1. THIT: COUM:

Once again, the holidays are just around the corner, and it's time to start thinking about gift giving and tree trimming. If you agree with us that hand-made items make the nicest gifts and add special sparkle to the holiday decor, be sure to check out the Glitter Globe. Not an ordinary ornament, this sophisticated piece
of "electronic sculpture" is made entirely of electronic components and small circuit boards. The two LED's on each PC board "chase" each other, creating the illusion that the Glitter Globe is spinning. Hanging on the tree, or in a window, it's a sure attentiongrabber! Turn to page 35 for all the details.

PAGE 51

PAGE 69

FAH/MODEM PROTECTOR

PAGE 43

As a service to readers, ELECTRONICS NOW publishes available plans or information relating to newsworthy products, techniques and scientific and technological developments. Because of possible variances in the quality and condition of materials and workmanship used by readers. ELECTRONICS NOW disclaims any responsibility for the safe and proper functioning of reader-built projects based upon or from plans or information published in this magazine.
Since some of the equipment and circuitry described in ELECTRONICS NOW may relate to or be covered by U.S. patents, ELECTRONICS NOW disclaims any liability for the infringement of such patents by the making, using, or seiling of any such equipment or circuitry, and suggests that anyone interested in such projects consult a patent attorney.

ELECTRONICS NOW, (ISSN 0033-7862) November 1992. Published monthly by Gernsback Publications, Inc., 500 -B Bi-County Boulevard, Farmingdale, NY 11735 . Second-Class Postage paid at Farmingdale, NY and additional mailing offices. Second-Class mail registration No. R125166280, authorized at Toronto, Canada. One-year subscription rate U.S.A. and possessions \$19.97, Canada \$27.79 (includes G.S.T, Canadian Goods and Services Tax Registration No, R125166280), all other countries S28.97, All subscription orders payable in U.S.A funds only, via international postal money order or check drawn on a U.S.A. bank. Single copies \$3.50. © 1992 by Gernsback Publications, Inc. All rights reserved. Printed in U.S.A.
POSTMASTER: Please send address changes to ELECTRONICS NOW, Subscription Dept., Box 55115, Boulder, CO 80321-5115.
A stamped self-addressed envelope must accompany all submitted manuscripts and/or artwork or photographs if their return is desired should they be rejected. We disclaim any responsibility for the loss or damage of manuscripts and/or artwork or photographs while in our possession or otherwise.

BUITD THIS

35 BUILD THE GLITTER GLOBE

Add some sparkle to the holidays with this electronic ornament.
Ron Holzwarth

43 FAX/MODEM PROTECTOR
 A low-cost project that safeguards your telephone-based gear.
 Tom Petruzzellis
 47 INRUSH CURRENT LIMITER
 Protect sensitive electronics with this device.
 Douglas Wirth
 51 LIGHT BEAM COMMUNICATOR
 The inexpensive "Air Hop" communicates with light!
 Rodney A. Kreuter

69 MONITOR TECHNOLOGY
A look at today's computer monitors.
Stan Warner

W?HINOROM

62 THE VERSATILE 555
 More circuits than you ever thought possible!
 Ray M. Marston

Diphrarionts

8 VIDEO NEWS

What's new in this fastchanging field.
David Lachenbruch
16 EQUIPMENT REPORT
Beckman Industrial HD-160 DMM

77 HARDWARE HACKER
Conventional currents, and more.
Don Lancaster

88 DRAWING BOARD A SSAVI descrambler. Robert Grossblatt

94 AUDIO UPDATE
Hear today, gone tomorrow.
Larry Klein
97 COMPUTER CONNECTIONS
Computers and consumer electronics.
Jeff Holtzman

ATD MORTE
 108 Advertising and Sales Offices

108 Advertising Index
91 Buyer's Market
4 Editorial

14 Letters

32 New Lit
22 New Products
12 Q\&A
6 What's News

Electronice

Hugo Gernsback (1884-1967) founder
Larry Steckler, EHF, CET, editor-in-chief and publisher

EDITORIAL DEPARTMENT
Brian C. Fenton, editor
Marc Spiwak, associate editor
Neil Sclater, associate editor
Teri Scaduto, assistant editor
Jeffroy K. Holtzman computer editor
Robert Grossblatt, circuits editor
Larry Klein, audio editor
David Lachenbruch contributing editor
Don Lancaster contributing editor
Kathy Terenzi, editorial assistant
ART DEPARTMENT
Andre Duzant, art director
Injae Lee, Illustrator
Russell C. Truelson, illustrator
PRODUCTION DEPARTMENT
Ruby M. Yee, production director
Karen S. Brown advertising production
Marcella Amoroso productionassistant
Lisa Rachowitz editorial production

CIRCULATION DEPARTMENT

Jacqueline P. Cheeseboro circulation director
Wendy Alanko circulation analyst
Theresa Lombardo circulation assistant
Michole Torrillo reprint bookstore

Typography by Mates Graphics
Cover inset photo by Diversified Photo Services. Background by David P. Dill, Unicom Stock Photos
Electronics Now is indexed in Applied Science \& Technology Index, and Readers Guide to Periodical Literature, Academic Abstracts, and Magazine Article Summaries.
Microfilm \& Microfiche editions are available. Contact circulation department for details.

Advertising Sales Offices listed on page 102.
Electronics Now Executive and Administrative Offices 1-516-293-3000.
Subscriber Customer Service: 1-800-288-0652.
Order Entry for New Subscribers: 1-800-999-7139.

In plastic and ceramic packages, for low-cost solutions to dozens of application requirements, select MiniCircuits' flatpack or surface-mount wideband monolithic amplifiers. For example, cascade three MAR-2 monolithic amplifiers and end up with a 25 dB gain, 0.3 to 2000 MHz amplifier for less than $\$ 4.50$. Design values and circuit board layout available on request.
It's just as easy to create an amplifier that meets other specific needs, whether it be low noise, high gain, or medium power. Select from Mini-Circuits' wide assortment of models (see Chart), sketch a simple interconnect layout, and the design is done. Each model is characterized with S parameter data included in our 740-page RF/IF Designers' Handbook.

All Mini-Circuits' amplifiers feature tight unit-to-unit repeatability, high reliability, a one-year guarantee, tape and reel packaging, off-the-shelf availability, with prices starting at 99 cents. Mini-Circuits' monolithic amplifiers ...for innovative do-it-yourself problem solvers.

Models above shown actual size

99
PLASTIC
SURFACE-MOUNT

PLASTIC SURFACE-MOUNT	$\begin{aligned} & \text { MAR-1 } \\ & 1,04 \end{aligned}$	$\begin{aligned} & \text { MAR-2 } \\ & 1.40 \end{aligned}$	+ VAM-3 1.45 MAR-3 1.50	$\begin{aligned} & \text { MAR-4 } \\ & 1.60 \end{aligned}$	$\begin{aligned} & + \text { VAM-6 } \\ & 1.29 \\ & \text { MAR-6 } \\ & 1.34 \end{aligned}$	$\begin{aligned} & \text { \#VAM-7 } \\ & 1.75 \\ & \text { MAR-7 } \\ & 1.80 \end{aligned}$	$\begin{aligned} & \text { MAR-8 } \\ & 1.75 \end{aligned}$	
	$\begin{aligned} & \text { MAV-1 } \\ & 1.15 \end{aligned}$	$+ \text { MAV-2 }$ 1.45	$\stackrel{\text { MAV }}{1.55}$	$\begin{aligned} & \text { MAV-4 } \\ & 1.65 \end{aligned}$				$\begin{aligned} & \text { MAV-11 } \\ & 2.15 \end{aligned}$
CERAMIC SURFACE-MOUNT	$\begin{aligned} & \text { RAM-1 } \\ & 4.95 \end{aligned}$	$\begin{aligned} & \text { RAM-2 } \\ & 4.95 \end{aligned}$	$\begin{aligned} & \text { RAM-3 } \\ & 4.95 \end{aligned}$	$\begin{aligned} & \text { RAM-4 } \\ & 4.95 \end{aligned}$	$\begin{aligned} & \text { RAM-6 } \\ & 4.95 \end{aligned}$	$\begin{aligned} & \text { RAM-7 } \\ & 4.95 \end{aligned}$	$\begin{aligned} & \text { RAM-8 } \\ & 4.95 \end{aligned}$	
PLASTIC FLAT-PACK	$\begin{aligned} & \text { MAV-1 } \\ & 1.10 \end{aligned}$	$\stackrel{+\mathrm{MAV}-2}{1.40}$	$\underset{\substack{\text { MAV } \\ 1.50}}{ }$	$\begin{gathered} \text { MAV-4 } \\ 1.60 \end{gathered}$				$\underset{2.10}{\text { MAV-11 }}$
	$\begin{aligned} & \text { MAR-1 } \\ & 0.99 \end{aligned}$	$\begin{aligned} & \text { MAR-2 } \\ & 1.35 \end{aligned}$	$\begin{aligned} & \text { MAR-3 } \\ & 1.45 \end{aligned}$	$\begin{aligned} & \text { MAR-4 } \\ & 1.55 \end{aligned}$	$\begin{aligned} & \text { MAR-6 } \\ & 1.29 \end{aligned}$	$\begin{aligned} & \text { MAR-7 } \\ & 1.75 \end{aligned}$	$\begin{aligned} & \text { MAR-8 } \\ & 1.70 \end{aligned}$	
Freq. MHz DC to	1000	2000	2000	1000	2000	2000	1000	1000
Gain, dB at 100MHz	18.5	12.5	12.5	8.3	20	13.5	325	12.7
Output Pwr +dBm	1.5	4.5	10.0	12.5	2.0	5.5	12.5	17.5
NF, dB	5.5	6.5	6.0	6.5	3.0	5.0	3.3	3.6

Notes: + Frequency range DC-1500MHz $\quad+$ Gain $1 / 2 \mathrm{~dB}$ less than shown
designer's kit, KH-1 avaiable only $\$ 59.95$ includes
40 AMPLIFIERS* 10 MAR-1, 10 MAR-3, 10 MAR-4, 10 MAR- 8
150 CAPACITORS* 50100 pt 501,000 pt, 5010.000 pt

740 page RF/F DESIGNER'S HANDBOOK

- MIXERS - POWER SPLITTER/COMBINERS - AMPLIFIERS - ELECTRONIC ATTENUATORS - I\&Q/QPSK MODULATORS - ATTENUATORS/TERMINATIONS - DIRECTIONAL COUPLERS - RF TRANSFORMERS - DIGITALATENUATORS - PHASE DETECTORS - SWITCHES/DRIVERS - FITERS. LIMTERS • FREQUENCYDOUBLERS
- values or models may be substitited without notice.

Unit price \$ (1-25 qty) for plastic surface-mount add suffix SM (example MAR-1SM)

Typical Circuit Arrangement

FITIDRIA

IT'S NOW OR NEVER

Now. This moment, this instant-it lives but a microsecond. Then it moves on and changes and becomes something new and different and better.

That's exactly what our magazine-our magazine, yours and mine-is doing. I grew up on Radio-Craft and Radio-Electronics. You've probably grown up on Radio-Electronics. The next generation of electronics professionals may not even remember Radio-Electronics, but they will know Electronics Now. For this new, yet old, publication will be their introduction to electronics. It will be their primer, their teacher, their guide, their companion. It will travel with them through their career just as Radio-Electronics has through yours. As long as there are electronics professionals, as long as there are people who follow the wonderful everchanging world of electronics, Electronics Now will be there.

Electronics Now is not a new magazine, it is simply a refinement of what has always been. It's an evolution to something better, something wiser, something stronger. A magazine more closely matched to electronics today. Carefully designed, tailored and directed by selected experts who can point you, our reader, through our pages, toward tomorrow.

Electronics Now is your magazine. It is the culmination of almost 100 years of progress from the Electrical Experimenter to RadioElectronics and finally Electronics Now.

If our founder, Hugo Gernsback, were here today, he'd probably note that we should have acted sooner. Perhaps he would have been right. But no matter what, we know we are correct in taking you and us on this new adventure. Join us as we go. Revel in the excitement of today and the adventure of tomorrow. Tell us what you like, what you hate, what we should do, and what we shouldn't.

Write our editors, contact our bulletin board, send me your ideas, comments, and criticisms. Help us make Electronics Now exactly the kind of magazine you know it should be. And never forget we may now bear the name Electronics Now, but at heart we are Radio-Electronics, Radio Craft, Shortwave Craft, Television, and the Electrical Experimenter.

Larry Steckler, EHF/CET Editor-in-Chief and Publisher

The DMM our customers designed.

Before we built the new generation Beckman Industrial Series 2000 DMMs, we asked people like you what you really want.

You want more. More test and measurement capabilities. More troubleshooting features. All in an affordable hand-held DMM. The Series 2000 features the widest range Frequency Counter in any professional DMM, a full-range Capacitance Meter, True RMS measurements, Intermittent Detection, 50ns Pulse Detection, and Peak Measurement capabilities. Plus, the Series 2000 is the only meter to offer autoranging Min/Max recording and relative modes.

You want a DMM that's easier to use. The Series 2000's display is 25% larger, with bigger digits and backlighting for easier reading, even in the worst light. Plus the fast 4 digit display provides the high resolution needed for adjusting .power supplies and generators down to 1 mV . And only the Series 2000 features a menuing system for fast, simple feature access.

The Beckman Industrial Series 2000 , priced from $\$ 209$ to $\$ 279$ offers you the best performance for your dollar. Look again at these features:

- 4 Digit, 10,000 Count Resolution
- Basic Accuracy to 0.1\%
- True RMS, AC or AC on DC
- 0.01Ω Resolution
- Automatic Reading Hold
- 1ms Peak Hold
- Fully Autoranging Relative and Min Max Modes
- Intermittent Detector
- UL1244, IEC1010 Design
- Three Year Warranty

The Series 2000 offers the most solutions for your everyday test and measurement needs. The only DMMs designed by the people who use them. You.
For more information on these new DMMs call (outside CA) 1-800-854-2708 or (inside CA) 1-800-227-9781. Beckman Industrial Corporation. 3883 Ruffin Rd.. San Diego, CA 92123-1898.

WHATS NETWS

A review of the latest happenings in electronics.

Fluke and Philips restructuring

John Fluke Mfg. Co., Inc. (Everett, WA) and Philips Electronics N.V. (Eindhoven, The Netherlands) on August 26 announced their intention to restructure their five-yearold alliance in the test and measurement business. Under the plan, which is expected to take several months to finalize, Fluke would acquire most of Philips' test and measurement operations for cash and stock. Once the contingency factors have been met (approval by Fluke shareholders and the Philips Board of Management, and review by the appropriate social and regulatory organizations), Fluke would acquire essentially all existing Philips' test and measurement businesses, with the exception of professional TV test equipment and power supplies. Fluke would then assume direct responsibility for worldwide marketing. development, manufacturing, sales, and support of most of the combined companies' present product lines. That includes the acquisition of sales and service operations in Europe. About 900 Philips employees would transfer to Fluke.

The management of both companies see the move as a logical progression in their alliance. According to Bill Parzybok. Fluke Chairman and CEO, "All along, we have been evolving the alliance to optimize our performance and improve our position in a changing marketplace. It has become apparent to both companies that a unified management structure, aligned under a single mission, would accelerate our growth and success." That mission, he said, is to position Fluke as the leader in compact, professional electronic test tools. The single focus is expected make the combined company more effective in product definition, design, and marketing, leading to streamlined production and better time-to-market
for new products. In addition. Fluke hopes its European presence will allow the company to take advantage of EC'92.
The transaction is expected to add about $\$ 125$ million to Fluke's revenues, and to favorably impact Fluke's earnings per share beginning in the first year of operations. Fluke expected to issue its proxy statement to shareholders in early November.

See-through magnetic material

Scientists at Xerox Corporation's Webster Research Center (Webster, NY) have produced a transparent magnetic material with potential applications in color imaging, computer information storage, magnetic fluids, and even magnetic refrigeration. When a magnetic material is moved into a magnetic field it heats up; when moved out, it cools down. That so-called magnetocaloric effect can theoretically be used to build refrigerators. Although magnetic refrigerators have been built, none have worked at anything near room temperature.) The crystalline material is chemically identical to the gamma ferric oxide that has been used for decades to coat audio and video recording tape. But the crystals that make up the physical form of the new material are far smaller than those of conventional magnetic material. The $\mathrm{Fe}_{2} \mathrm{O}_{3}$ crystals comprising the magnetic material range in size from two to ten nanometers. With such small crystals, the material loses its usual ferromagnetic property and becomes super-paramagnetic-a state in which the crystals will stick to a magnet but not to each other.

The transparency is an added bonus that is not generally found in magnetic materials at room temperature. The scientists have not yet determined why the nanocrystals are more transparent than the larger
crystals of conventional $\mathrm{Fe}_{2} \mathrm{O}_{3}$. Although some transparent magnetic materials already exist, their magnetic properties are either too weak to be useful, or they function only at temperatures near absolute zero.

World's most powerful laserlight beam

A breakthrough in the international race to create the world's most powerful laser-light beam has been achieved by scientists at The University of Michigan (Ann Arbor. MI) and the French National Atomic Energy Commission. The $55-$ terawatt beam of laser light-one terawatt is equivalent to one trillion watts-was produced in April 1992 at the Centre d'Etudes de LimeilValenton (Limeil, France). The previous record, set last year in Japan. was 30 terawatts. The beam was produced by the Center's P-102 laser with a laser amplification technique and a second preamplifying laser developed by Gerard A. Mourou, professor of electrical engineering and computer science at Michigan, and his co-researchers.

During the brief laser burst, researchers produced the 55 terawatt of power-the equivalent of 100 times the total electrical power generated in the United States. According to Mourou, "The laser beam can be focused over a spot smaller than the diameter of a human hair to produce extremely high power densities." The researchers say that the most immediate application of the new technology will be to determine what happens when extremely intense laser beams interact with matter.

Preliminary experiments showed that when high-powered laser pulses are shot through plasma, shock waves are created that are capable of accelerating electrons close to the speed of light in very small distances. That could lead to Continued on page 74
D)

Ultravariable Pulse Generator

-0.5 to 5 MHz

- Run, Triggered, Gate, Single-Shot - Independent width and space controls
- Variable 50Ω output

Model 4001

$\$ 199.95$

Audio/Sweep Generator

- Sine/Square/Triangle
- 1 Hz to 100 kHz
- Variable DC offset
- Sweepable 100:1
Model 2001
$\$ 178.50$

2MHz Sweep Function Generator

- 0.2 Hz to 2 MHz
- Duty-cycle, symmetry controls - 50Ω output
- VCO input

(\$178

Model 2002

\$219.95
Digitally Synthesized Generator -DC to 1.6 MHz

- Trigger, Sweep, Burst, Hop and Gate modes - Internal/External Sweep
- Sine, Square, Triangle, Ramps
- Optional RS-485 communications port
- 16 programmable memories
Model 2003
$\$ 499.95$
Compare the specifications and the prices of these four instruments with the competition. Then compare the labels. Global's say "Proudly Made in U.S.A.". Designed and manufactured in our Connecticut factory with the value and quality that Global is known for. The competitors, they look alike because they are. Different names on the front. The same label on the back. "Made in Taiwan".
With Global you'll get a Good Buy, and can say Good-bye to imports.

- Nintendo goes 32-bit. Taking its competitors by surprise, Nintendo announced that, unlike other vid-eo-game manufacturers, it will skip the current generation of 16 -bit games and go directly to a 32 -bit processor when it introduces its CD-ROM accessory next year. The company announced that it had developed a proprietary "Super FX" chip that will make possible 16 -bit cartridge games with "true 3D effects." Because its next-generation cartridge games will be 16 -bit, the company decided that it would need an enhanced CD-ROM to offer customers a "truly superior game experience."

The new CD-ROM drive will function within the CD-ROM/XA environment, Nintendo said, which theoretically would make it compatible with Philips' CD-I.

- VIS vs. CD-I. Tandy's Video Interactive System, or VIS, designed to play CD-ROM's through consumer TV sets (Electronics Now. November 1992), formally carries a suggested list price of $\$ 699$, which includes Compton's Multimedia Encyclopedia. Philip's incompatible CD-I system also lists at $\$ 699$, after recent price reductions, and dealers have been selling it at $\$ 599$. Consumers who bought players at higher prices are being mailed coupons good for $\$ 100$ worth of free software. In addition, purchasers returning warranty cards are sent coupons that are good for transfer of their photos to a Photo CD. The CD-I format is compatible with Kodak's Photo CD system (but VIS currently isn't).
- TV's are growing. Larger picture sizes continue to grow as a share of the television-receiver market. In the first half of 1992, sales of direct-view sets with tubes 30 inches and larger (diagonally) were up 64\% from the same period of 1991. Projection TV sales were up
14%, but the larger sized projectors (50 inches and larger) rose by more than 21%.
- Who's number one? Number one in TV set sales, that is. That position is still held by RCA as the leading brand in the United States, with just over 16% of the market. Zenith continues as number two, with a little more than 10%, followed by Magnavox with 9%. Sony is fourth with 7%, and Sharp is fifth with $51 / 2 \%$. The rankings are by Television Digest, which has been surveying TV market shares for 26 years. In the first brand rankings for projection TV, Mitsubishi was the clear winner with 22.6% of the market, followed by Magnavox with 4\% and RCA with 13%.
- Digital HDTV works. The first report on digital high-definition TV by the Advanced Television Test Center (ATTC), which is testing proposed systems for the FCC, offered great encouragement for the future of digital TV transmission. Reporting on the first digital system it test-ed-General Instrument's Di-giCipher-the ATTC's results indicated generally good picture quality with low levels of interference. Contrary to doubts expressed in Europe and Japan, where analog systems are espoused, the tests showed that DigiCipher produces less interference with other broadcasts than the analog NTSC system used in the United States. The tests also appeared to show that the DigiCipher system can provide the same coverage distance from the transmitter as the NTSC system, but at $13-\mathrm{dB}$ lower power. However, digital HDTV does appear to be more sensitive to phase noise, which can probably be overcome by the development of improved filters in TV sets.
- Priming HDTV's pump. The fact that HDTV is technically possi-
ble doesn't necessarily mean that it will proceed rapidly once a system is chosen. As a matter of fact, it's difficult to determine how the first HDTV pictures will be delivered-by terrestrial broadcast stations, direct satellite, cable, or even possibly by prerecorded media such as videotape or laserdisc. Although the FCC-sponsored tests are designed to determine the best system for terrestrial HDTV broadcasting, it's entirely possible that broadcasters will take a wait-and-see attitude toward HDTV before going to the tremendous expense of adding new studio and transmission equip-ment-and quite likely new antenna towers to disseminate two separate types of broadcasts during the interim period of HDTV's introduction while NTSC signals are still being broadcast.

When color TV was introduced, TV station owners were extremely reluctant to add color origination equipment because the lack of audience meant that they couldn't charge advertisers a premium for color broadcasts. And it wasn't until 10 years after the introduction of color TV that consumers bought a million sets in any year. (The figure is now well over 20 million a year.) Broadcasters say they can't be certain that there is any market for HDTV-but they do see a lucrative by-product of the current HDTV tests. All digital HDTV systems rely on data compression to squeeze four times the current information into a single $6-\mathrm{MHz}$ channel. So broadcasters are asking whether it might be more lucrative for them to use compression technology to cram two or more standard-definition broadcasts onto a single channel, and thus help on-air broadcasters attain the multi-channel capacity that will let them compete with cable.

Cable itself is in a better position than broadcasters to provide early

Continued on page 74

This Christmas give an electrifying gift ... plug a friend into Electronics Now and brighten the whole new year! Whether electronics is your friend's livelihood or hobby, your gift will illuminate the whole spectrum of electronics throughout the coming year and provide a monthly reminder of your friendship.

Electronics Now will keep your friend informed and up-to-date with new ideas and innovations in all areas of electronics technology ... computers, video, radio, stereo, solid state devices, satellite TV, industrial and medical electronics, communications, robotics, and much, much more.

We'll provide great plans and printed circuit patterns for great electronic projects. In just the last year, Electronics Now has presented amateur TV equipment, computer peripherals, stereo transmitters, test equipment, speakerphones, robots, audio amplifiers, power inverters, and much more.

In coming issues, Electronics Now will present practical, educational, and money-saving projects like: an electronic drum, an audio effects generator, communications equipment, a light-beam communicator, a remote car starter, an uninterruptible power supply, and many others!

PLUS ... equipment troubleshooting techniques ... circuit design ... reports on new technology and new products ... equipment test reports ... indepth coverage on computers, video, audio, shortwave radio ... and lots more exciting features and articles.
-Basic sub rate - 1 yr/ $\$ 19.972$ yrs/\$38.97

SAVE $\$ 17.43^{*}$... OR EVEN $\$ 35.83^{*}$... For each gift of Electronics Now you give this Christmas, you save a full $\$ 17.43^{\star}$ off the newsstand price. And as a gift donor, you're entitled to start or extend your own subscription at the same Special Holiday Gift Rate - you save an additional $\$ 17.43 *$!

No need to send money ... if you prefer, we'll hold the bill till January, 1993. But you must rush the attached Gift Certificate to us to allow time to process your order and send a handsome gift announcement card, signed with your name, in time for Christmas.

So do it now ... take just a moment to fill in the names of a friend or two and mail the Gift Certificate to us in its attached, postage-paid reply envelope. That's all it takes to plug your friends into a whole year of exciting projects and new ideas in Electronics Now!

1\& A

Write to Q \& A, Electronics Now, 500-B Bi-County Blvd., Farmingdale, NY 11735

50-OHM TERMINATION
 I recently bought a card for my

 PC that lets me control things like motors and relays. My problem is that the instructions tell me that each line to the relay or motor must be terminated with at least 50 ohms. I'm not exactly sure what that means, and I was hoping you could explain it to me.-G. Cherben, Nighten, INI'm not exactly sure what kind of hardware you bought for your PC. but no matter what it is, yours is the kind of question I like-nice and easy.

All the instructions are telling you is that each of the card's outputs want to see a load of 500 ohms. That kind of termination is standard for computer networks and other things. If you're having a hard time understanding why it's needed, think for a minute of the power-amplifier outputs on a stereo. It's never a good idea to leave them unconnected to anything because an infinite load like that (that's what an open connection is) can put an unnecessary strain on the stereo's output transistors.

The same is evidently true for your controller card. Just as it doesn't want to see a direct short on the control lines, it doesn't want to see too high a resistance either.

I'm a bit surprised that an external termination is required since it would have been easy for the card's designers to include it on the card itself. Most motors and relays have fairly low winding resistances, so the addition of a 50 -ohm resistor is pretty silly-kind of like putting a 10 amp fuse on a line that will draw a maximum of only 1 amp . Remember that adding a 50 -ohm resistor in parallel to a motor winding with a resistance of 3 ohms or so isn't going to add much to the equivalent total resistance of the pair.

You can buy 50 -ohm terminators or just solder a 50 -ohm resistor on
the line. By the way, for all intents and purposes, a 47 -ohm resistor is close enough.

FIG. 1-CRYSTAL OSCILLATOR. If you use an inverting hex buffer like the 4049, powered from a 5 -volt supply, the circuit will work with crystals as high as 14 MHz .

CRYSTAL OSCILLATOR

I'm building a circuit that requires a crystal oscillator, but I'm not sure which design to use. I don't have to worry about any extreme temperatures, and I have a bunch of spare gates left over on the board. Most of the crystal oscillator designs I've seen require the addition of special chips, and I don't have a lot of room left on the board. Have you got a simple circuit that will
do the job?-J. Gillan, Hendon, NH

If your requirements are as simple and straightforward as you say, the circuit in Fig. 1 is exactly what you need. It can be made from the extra gates you have, is self-starting, and is also extremely reliable.
The circuit will work well with as little as a 5 -volt supply, and the crystal frequency limit really depends on the amount of gain there is in the gate you use. Something like a 4049 will work with crystals as high as 14 MHz . If you use more than 5 volts for the supply, you should be able to go even higher.

One interesting variation on this circuit is to use a two-legged gate instead of a simple inverter. That will let you turn the design into a gated oscillator so you can turn it on and off under circuit control. I don't know if that's important in your application, but it's a good thing to keep in the back of your mind.

SCAN RATES

I know this information has probably been printed somewhere before, but could you tell me what the scan rates are for the various kinds of IBM video? I have several monitors available, and I'm not sure which ones can be used with which graphics cards.-S. Heller, New York NY

The variety of IBM video standards has always caused confusion.

It's usually a problem when people want to upgrade their video. In any event, the IBM standards are listed in Table 1. Notice that it doesn't include any of the super VGA frequencies. The reason for that is simply because super VGA frequencies can be anywhere from the regular VGA standard to as high as 50 kHz with a $70-\mathrm{Hz}$ vertical refresh rate. That usually shows up when you get into super VGA with interlaced or non-interlaced video.

QIC AND EASY

I have a QIC-40 tape backup in my computer, and I have just increased the size of my hard drive to 120 megabytes. I know I can back up the drive on several different tapes, but it's a pain in the neck to tag a bunch of files, back them up, then tag another bunch, back them up, and so on. Is there an easier way or will I have to buy a tape drive with a larger capacity?-D. Tunn, Tenafly, NJ

I can't accept the idea that having to use a couple of tapes to back up your new, larger, drive is such a chore. You've obviously forgotten what it was like to back stuff up on floppies. But there are several alternatives you can try.

The first, and most obvious, is that the software that drives the tape usually gives you a way to build a tag list and, by specifying that you want to back up everything in the listed directories, you should be able to avoid having to tag the files individually.

Most tape software also allows you to compress the files on the tape so you can effectively turn a 40-megabyte tape into a larger one. The number of extra files you can get on the tape depends on what kind of files you have to back up, and how effective the software's compression algorithm is. Text and other data files will squeeze down by at least 70%. That is only an estimate, but you should be able to get a substantial savings by compressing the files as you back them up.

If the software that came with your tape drive doesn't have any of those features, there are other programs that will provide them. QIC-40 is a standard that allows a
tape recorded on any QIC-40 drive to be read on any other QIC-40 drive.

Another alternative to shelling out bucks for a new tape drive is to use a DC 2120 cartridge rather than the standard DC 2000 that you're probably using now. Those cartridges are compatible with your drive and, because thinner Mylar is used for the tape itself, you can format it to about 60 megabytes. When you add data compression, you should be able to get over 100 megabytes on the tape.
If you are interested in buying a new tape drive, QIC-80 tape drives double the storage capacity of QIC-40 drives by packing twice as much data on the same tape. A OIC-80 drive formats a DC 2120 tape to 120 megabytes, and roughly doubles that to about 250 megabytes using software compression. A new drive won't even set you back by much-QIC-80 drives, such as the Colorado Memory Systems' Jumbo 250, sell for as little as $\mathbf{\$ 2 5 0}$, mail order.

LESS THAN MTS

I have an RCA stereo TV that I'm happy with for the most part. It's just that, on occasion, a stereo broadcast will sound like it's coming out of a seashell. I'd love to blame the cable companyand I usually can-but my VCR doesn't suffer the same problem. Friends have told me that the problem is because my TV isn't a true MTS-compatible set. Is this true?-M. Johnson, Lindenhurst, NY

Many people have complained about problems similar to yoursincluding the folks over at dbx . whose noise-reduction circuitry must be incorporated into any stereo TV circuitry in order for it to be called MTS. Lots of manufacturers insist that they can meet the MTS specifications without using dbx , but that's usually done to avoid paying licensing fees to dbx . I suspect that your RCA TV does not have dbx, while your VCR does. If the noise really bothers you, and you're not ready to buy a new TV-with dbx noise reduction-then just use your VCR as the tuner for as long as you have to.

Earn Your B.S. Degree in ELECTRONICS

or COMPUTERS

By Studying at Home

Grantham College of Engineering, now in our 42nd year, is highly experienced in "distance education"teaching by correspondence-through printed materials, computer materials, fax, and phone.

No commuting to class. Study at your own pace, while continuing on your present job. Learn from easy-tounderstand but complete and thorough lesson materials, with additional help from our instructors.

Our Computer B.S. Degree Program includes courses in BASIC, PASCAL and C languages - as well as Assembly Language, MS DOS, CADD, Robotics, and much more.

Our Electronics B.S. Degree Program includes courses in Solid-State Circuit Analysis and Design, Control Systems, Analog/Digital Communications, Microwave Engr, and much more.

An important part of being prepared to move $u p$ is holding the right college degree, and the absolutely necessary part is knowing your field. Grantham can help you both waysto learn more and to earn your degree in the process.

Write or phone for our free catalog. Toll free, 1-800-955-2527, or see mailing address below.

Accredited by

the Accrediting Commission of the
National Home Study Council
GRANTHAM College of Engineering

Grantham College Road

Write to Letters, Electronics Now, 500-B Bi-County Blvd., Farmingdale, NY 11735

DISTORTIONLESS POCKET STEREO AMP

I have some information regarding the "Pocket Stereo Amp" (Ask R-E, Electronics Now, August 1992) that might be helpful to the person who was having distortion problems when using an LM386. l've experimented extensively with that IC, and while simplicity has its merits, we must remember that a job worth doing is worth doing well. Because pocket stereos often have excellent sound quality, steps should be taken to maintain that quality when building an add-on amplifier for it.
The bare-bones design shown in Fig. 2 of the article might work, but
the inclusion of a few junk-box components will yield better results. I've been using the design shown to the right, which is the one that generally shows up in projects that incorporate an audio section. Though the values sometimes differ slightly, all of these components usually appear in the circuit.

The first time I built this amplifier, I omitted capacitor C3 thinking that it would be unnecessary with a battery supply that contains no ripple. That resulted in severe distortion even at low input signal levels. The amplifier even tended to oscillate at times. After some head scratching, I connected a large-value electrolytic capacitor between pin 6

(supply) and ground, which eliminated the problem completely.

The amplifier can be driven with a line-level signal from an auxiliary output or from the headphone jack of a pocket stereo. In the latter case, with R1 adjusted for maximum volume level, the pocket stereo's volume control should be adjusted to the minimum level that will provide adequate sound. That will prevent the possibility of overdriving any LM386's. Once that is done, R1 can be used to adjust the volume.

If two such amplifiers are being used for stereo, C3 can be connected between the common supply line and ground. If you use a power supply that contains a filter capacitor, C3 might not be necessary. C2 is optional as stated in the original article, depending on the need for gain. I recommend using it because even though the amplifier in the pocket stereo provides gain. most of that gain will be lost when the controls are adjusted to limit the level of the input signal.
Capacitor C 1 can be omitted if there is no DC component on the input signal line. There probably is none if the source is an earphone jack or auxiliary output of a CD player or cassette player. I have occasionally seen pin 7 (bypass) connected to ground through a capacitor, but it doesn't seem to make
any noticeable difference in this application, so l've never used it.

The design shown in Fig. 1 gives a surprisingly good sound considering the low cost of the IC.

As always, I'm grateful for the Letters column in Electronics Now that allows the exchange of information among readers.
STEVE BABBERT
Worthington, OH

THEFT OF SERVICES

I fail to understand you guys. Is Electronics Now a socialist magazine, advocating ripping off cable companies because they are Robber Baron Capitalist Fat Cats, or something? Robert Grossblatt says, "If the cable companies put the signal on your wire, you should have the right to use it." Does he steal from coin newspaper boxes too? After all, his quarter has purchased him access to the box. right? Hasn't he ever heard of "implicit contracts?"

When he took his cable service, he agreed to take the services he paid for. I agree that he should have the right to experiment. But if he steals programming, he isn't just stealing from the Fat Cat Cable Company-he steals from a lot of other people: technicians who work for the cable company, artists who do the programming, electronics manufacturers who supply products to the cable companies, and ultimately from little electronics companies like mine. We design and repair cable, and that work keeps a technician and an engineer employed. That's how I see it. And I think that the law agrees with me.
P. MIHOK

Don Mills, Ontario, Canada

TURN-SIGNAL FLASHER UPDATE

The circuit suggested by Timothy Brooks in September's Letters column, designed to augment the toofaint click of the automobile turnsignal flashers (a $47-\mu \mathrm{F}$ capacitor in series with a small speaker connected across the flasher unit) works fine. However, there must be a current-limiting resistor in the circuit. Without it, the speaker's voice coil soon opens up.
F.G. HUTCHINSON

Redwood City, CA

ANOTHER FLASHER UPDATE

The letters in the September issue of Electronics Now, suggested different complicated electronic solutions for amplifying an automobile's turn-signal sound. There is a much simpler solution to the weak turn-signal sound problem; I have been using it for a number of years. Many automotive departments of retail stores stock replacement flashers. Look for an Ideal Loud Turn-Signal Flasher No. 577 V (Ideal Division, St. Augustine, FL 32084).

It can replace any 12 -volt, twoterminal flasher. Only one problem might be encountered: The loudflasher's case is slightly more than twice as long as a regular flasher's case. That becomes a problem only if there is a lid covering the terminal box containing the flasher. In that case, you can cut a hole in the lid to accommodate the new flasher, or leave the lid off entirely.
VINCENT M. SARITI
Dover, NJ

DISKETTE CONVERSION

In the Q\&A column in the September issue of Electronics Now, there was a discussion of double- and high-density diskettes, and whether or not there really is a difference between them I have converted 3.5 -inch "floppy" disks from double-density to high-density by forming a hole in their cases, and I have found that the converted disks work fine without problems. However, be very careful not to let any small material chips get inside the disk case.
When a hole is made in the proper place, a small opening into the disk case is created. If a chip from the drilling or punching gets into that hole, it could cause serious damage to the disk-or, even worse, to the disk drive. I consider drilling the hole to be out of the question, and recommend using a very sharp and sturdy punch. Several of these are now on the market.
EMERSON M. HOYT
Beaverton, OR
R-E

Many people who use digital multimeters-even those who use one every dayconsider DMM's to be little more than commodity items. Other people, especially those whose livelihoods depends on the DMM, know the importance of a well designed meter. They'll want to know about a new DMM from Beckman Industrial Corporation (Instrumentation Products Division, 3883 Ruffin Road, San Diego, CA 92123-1898): the HD160 heavy duty digital multimeter.

The HD160 is the latest entry in Beckman Industrial's "HD" line of heavy-duty DMM's. It is housed in a sleek, bright yellow case that measures about $6.8 \times 2.8 \times 1.3$ inches. A black rubber holster is supplied with the DMM to provide extra protection. Although the holster adds significant bulk to the meter, it can actually make handheld operation easier, thanks to two probe holders on the holster. The user can hold the meter with one attached probe in one hand, and the remaining probe in the other. The probe holders also provide a secure, safe place to store the probes when the meter is not in use.

The holster also provides a tilt stand that is particularly convenient for bench-top use; a tilt bale provides fixed tilt angles of 20 or 60 degrees from perpendicular. We would expect the HD160 to be used away from the benchtop as often as not. If you've ever used a DMM while at the top of a ladder or while perched on the service platform of a large industrial machine, you've undoubtedly found that three hands could come in very handy. The HD160 offers what might be the next best thing: a "Flex-Strap." The Flex-Strap is a Velcro-covered fabric strap that lets you hang the meter vertically from a wide variety of pipes, beams, and the like. Pipes up to about three inches in diameter will serve just fine.

The face of the meter is agreeably uncluttered. A large, 7-position rotary control sets the main function selections: $A C$ volts, $D C$ volts, resistance, diode test/continuity, DC current, and AC current. Below the rotary control are four input jacks: a common, one for voltage and resistance measurements one for current measurements of 40 mil liamps or less, and one for current measurements up to 20 amps .

At the top of the meter's face. below the 4 -digit (10,000 -count) LCD readout, are three round pushbuttons: menu, select, and clear. The sensible menu system is what helps keep the meter face so uncluttered. When the meter is first powered up, it is in its autoranging mode. To change the range, you would press the menu key: a four-item menu (range, hold. rel. and min max) flashes above the digits. With the first press, the menu cursor is on the range selection. Successive
pushes of the select button changes the range. Successive pushes of the menu button changes the cursor position. The CLEAR button can clear a given entry, or it can clear the entire menu, resetting the meter. We found the menu system to be intuitive.

The meter's hold mode, which Beckman Industrial calls "Probe Hold," automatically freezes the meter's display when a stable reading is reached. That means the meter user can keep his hands on the probes, not on the meter-an important feature if you work around dangerous voltages.

The relative mode lets the meter measure values with respect to a reference other than zero. The feature works in the voltage, resistance, current, and diode-test modes.

The max min mode lets the meter measure and record the minimum and maximum values of input signals. The feature works with all functions except diode test. The mode is not useful for capturing transients, but it can be used to measure the operating parameters of a circuit. The automatic power-down feature does not, fortunately, operate in max min mode.

An analog bar graph, made up of forty LCD segments, is useful for peaking circuits; they respond faster than the digital display (20 updates a second as opposed to 2 updates a second), and-as with an analog moving-coil meter-small changes are more obvious.

The HD160 offers true-rms measurement capability depending on the input signal's crest factor. The crest factor is the ratio of a signal's peak voltage to its $r m s$ value. A sine wave has a crest factor of 1.414, a full-wave rectified sine wave has a crest factor of 3.247 . Signals with crest factors up to 5.0 can be measured when the display is at or below 2500 counts. At half scale

Continued on page 96

ELIMINATES SEARCHING, SCANNING, TUNING

 NIERCEPIOR
INTERCEPT, DETECT \& CAPTURE

 Near Field Transmissions with Optoelectronics' New INTERCEPTOR
NEW TECHNOLOGY

- Follows \& Locks on even when frequency changes.
- Intercepts ALL FM Two-Way Transmissions without gaps in coverage.
- Does Not have to tune through RF Spectrum to find signals.

FCC Classified as Communication Test Instrument for:

- Deviation, FM, FMN •Relative Signal Strength
- Signaling Tones (CTCSS) •Modulation Monitor
- Great for testing VHF, UHF \& Cellular transmitters

A New Dimension in Recreational Monitoring - Intercept the Two-Way Communication that Surrounds You. Increase Your RF Security.

Hand Held/Shirt Pocket Size

INTRODUCTORY OFFER
Interceptor ${ }^{\text {r" }}$ R10 FM Communications
Interceptor (Includes NiCads, AC/Charger
Adapter, Antenna, Earphone).

MADE IN THE U.S.A.
OPTIONS
Headphones (Lightweight personal headphones)
Antenna Pak 2 (Five assorted rubber duck antennas - save \$32.) .. \$ 99.
TC200 Tone Counter (CTCSS signalling tones).. 179
APS-104 (Extends RF detection distance 10x) .. $\$ 995$.
CF800 Cellular Band Pass Filter/Amplifier.
$\$ 299$.

factory direct order line 1-800-327-5912

No other training to troubleshoot computers

Only NRI walks you through the step-by-step assembly of a powerful 386sx computer system you train with and keep-giving you the handson experience you need to work with, troubleshoot, and service today's most widely used computer systems. Only NRI gives you everything you need to start a money-making career, even a business of your own, in computer service.

No doubt about it: The best way to learn to service computers is to actually build a state-of-the-art computer from the keyboard on up. Only NRI, the leader in career-building at-home electronics training for more than 75 years, gives you that kind of practical, real-world computer servicing experience.

Indeed, no other training-in school, on the job, anywbere-shows you how to troubleshoot and service computers like NRI.

Get inside the West Coast 386sx computer system... and experience all the power and speed of today's computer technology!

DISCOVERY LAB
Complete breadboarding system lets you design and modify circuits, diagnose and repair faults

LESSONS

Clear, illustrated texts build your understanding of computers step by step

With NRI's exclusive hands-on training, you actually build and keep the powerful new West Coast $386 \mathrm{sx} / 20 \mathrm{MHz}$ mini tower computer system.

You start by assembling and testing your computer's 101-key "intelligent" keyboard, move on to test the circuitry of the main logic board, install the power supply and 1.2 meg high-density floppy disk drive, then interface your high-resolution monitor.

What's more, you now go on to install and test a powerful 40 meg IDE hard disk drive-today's most-wanted computer periph-eral-included in your course to

dramatically increase your computer's data storage capacity while giving you lightningquick data access. But that's not all!

Professional diagnostic hardware and software makes troubleshooting fast and accurate

Your NRI training now includes a remarkable diagnostic package that allows you to quickly locate and correct defects in IBM XT, AT 80286/80386, and

shows you how and service like NRI!

NEW! 40 MEG HARD JISK DRIVE!
You install this 40 meg IDE lard disk drive internally, for greater data storage capacity ind data access speed

NEW! 386sx/20 MHz

 MINI TOWER COMPUTER! Features 32 -bit 80386 sx CPU, 1 meg RAM, 64 K ROM, 1.2 meg high-density floppy disk drive

NRI gives you the confidence and the know-how to step into a full-time, money-making career as an industry technician, even start a computer service business of your own!

No experience necessary... NRI builds it in

With NRI, you learn at your own pace in your own home. No classroom pressures, no night school, no need to quit your present job until you're ready to make your move. And all throughout your training, you have the full support of your personal NRI instructor and the NRI technical staff, always ready to answer your questions and give you help whenever you need it.

FREE catalog tells more. Send today!

Send today for NRI's big, free catalog that describes every aspect of NRI's innovative computer training, as well as hands-on training in TV/video/audio servicing, telecommunications, industrial electronics, and other high-growth, high-tech career fields.

If the coupon is missing, write to NRI School of Electronics, McGraw-Hill Continuing Education Center, 4401 Connecticut Avenue, NW, Washington, DC 20008.
compatible computers.
You'll use your Ultra-X QuickTech diagnostic software to test the system RAM and such peripheral adapters as parallel printer ports, serial communications ports, video adapters, and floppy and hard disk drives. You'll go on to use your R.A.C.E.R. diagnostic card, also from Ultra-X, to identify individual defective RAM chips, locate interfacing problems, and pinpoint defective support chips.

This ingenious diagnostic package is just one more way
 cedures for a device, and clearly indicate test results and the IC pins where failure has occurred. The "loop test" continuously checks the device under test until a failure is encountered. This technique detects intermittent failures before the components are assembled in a product.
A memory stores responses from a known to be good PC-board for incircuit testing.
Responses are permanently stored in one of two internal EEPROM's or any of the four EEPROM's located behind the instru-

CIRCLE 16 ON FREE INFORMATION CARD
ment's front-panel access door. In out-of circuit testing, the device to be tested is inserted into the zero-in-sertion-force socket on the instrument, and a button is pressed so a display shows eithera "pass" or "fail" and the pin numbers that have been identified as faulty.
The Model 560A includes a device data library that contains data on more than 90% of existing 14 - to 28 -pin IC's. That library will be updated free of charge as new IC's are introduced. Optional AK-560A custom programming software.
which does require a processing by a personal computer, allows users to organize tests for nonstandard and custom TL and CMOS IC's.
The Model 560A is sold complete with an instruction manual, condensed instructions, IC library list. power cord, in-circuit IC test clips and cables, EEPROM for board-test routines, ground cable, and a spare fuse. It has a price of $\$ 3500$ - $\mathrm{B}+\mathrm{K}$-Precision, 6470 est Cortland Street, Chicago, IL 60635; Phone: 312-889-1448.

CIRCLE 17 ON FREE INFORMATION CARD
feared signal of an X-band police radar gun. Used to test detectors, the unit activates when a button is pressed. A single red LED
indicates that it's transmitting. A full signal intensity reading will appear on your police radar detector if it is functioning properly. The "Leash" has an effective range for test purposes of up to a mile.
The size of an audio cassette tape, ($4.5 \times 2.75 \times 1$ inch), The Leash transmits at least 12 milliwatts of power at 10.525 GHz . The manufacturer specifies an 8 dB antenna gain and a 36
$\times 72$ antenna beamwidth. A 9 -volt alkaline battery will keep it on the air for about six hours of continuous use, and will power it for several months of intermittent use.

The Leash has a list price of \$99.-Dynaspek, Box 564. Westmont, IL 60559; Phone: 708-325-7450.

CABLE SCANNER LAN TESTER. It is now possible to eliminate local-area network faults and decrease network downtime when malfunctions occur with the Cable Scanner LAN tester from Contact East. The tester works with Ethernet, ARCnet, StarLAN, Token Ring. TwistedPair and other networks.

CIRCLE 18 ON FREE INFORMATION CARD

A stand-alone tester, Cable Scanner permits system analysis to determine if the fault is within the cabling. It then assists in pinpointing the location of the faults or breaks. The scanner provides measurements of cable resistance and noise level, and gives audible continuity checks. It can accommodate a line printer to \log activity.

After the fault has been located with CE's Cable Scanner, an internal "Tracer" circuit indicates
exactly where the cable is located in the wall or above the ceiling. It picks up signals introduced into the the cable by the scanner. The Cable Scanner can also be coupled to a personal computer or oscilloscope for system analysis while the LAN is operating. The complete Cable Scanner system includes the Tracer, three adapters (Ethernet, ARCnet, and twisted-pair), printer cable, a PC program disk, printer test connector, six AA nickelcadmium rechargeable batteries, and an operator's manual. The tester is in a case measuring $1 \times$ 4×7.5 inches and weighs 2 pounds.

The LAN Cable Scanner is priced at $\$ 1495$.-Contact East, 335 Willow Street South, North Andover, MA 01845 Phone: 508-682-9844.

SOLDER PASTE EVALUA-

 TION KIT. Solder cream, powdered solder mixed with flux, has many advantages over conventional flux-core wire solder or preforms in electronics manufacturing. The cream can be applied more precisely to the parts to be soldered, less solder is needed. there is better control of metal deposition, and the wetting of metals to be bonded is more uniform.

CIRCLE 19 ON FREE INFORMATION CARD

ESP is offering its Kit-5, containing five prepackaged containers of ESP solder cream, molded dispensing tips, and a reusable hand dispenser for
precise solder application to help you evaluate its product. The kit includes two tubes each of 60% tin. 40% lead solder paste alloy and lead-free 96% tin and 4% silver solder. Each 35 gram tube is supplied with both an activated rosin flux and a water-washable flux. Also included in the kit is a prepackaged tube of ESP's activated rosin paste flux for evaluating its desoldering effectiveness.

The Kit-5 evaluation kit is priced at \$89.-ESP Solder Plus, 14 Blackstone Valley Place, Lincoln, RI 02865-1145: Phone: 1-800-338-4353; Fax: 401-333-4954.

DIAGNOSTIC CARD. A faulty power supply can introduce errors into a computer. The Power Good from Sibex is said to be the first diagnostic card dedicated to the test of PC power

CIRCLE 20 ON FREE INFORMATION CARD

supplies. It is intended to assure the user that quality power at the specified voltage is being drawn by the computer.

The user plugs the card

Electronics Workbench The electronics lab in a computer-

Powerful software to build and simulate analog and digital circuits.

Building and testing circuits is fast and easy with Electronics Workbench. Just click-and-drag with a mouse to add parts, run wires, and adjust instruments. The traces on the simulated instruments are the same as you'd get on real equipment.
Electronics Workbench really is an electronics lab in a computer. It's ideal for learning about electronics, experimenting, and prototyping circuits,
"Electronics Workbench is pretty amazing." - Jerry Pournelle, Ph.D., InfoWorld

DOS Professional Version - \$299 Macintosh Version - $\$ 199$
Electronics Workbench includes:

- Analog Module with passive and active components including transistors, diodes, and opamps; a function generator, an oscilloscope, a multimeter, and a Bode plotter.
- Digital Module with gates, flipflops, adders, a word generator, a logic analyzer, and a unique logic converter and simplifier.

(416) 361-0333

Interactive Image Technologies Ltd. 908 Niagara Falls Boulevard North Tonawanda, NY 14120-2060
Fax (416) 368-5799

Prices are in US dollark. Offer valid in the VSA and impadactive Macintorh Verrion is monoctirome only, All trademaris are the property of their reipective owners

Rest assured, no scope was injured in the making of this ad.
After all, the volunteer is a member of our new TAS 400 family of analog oscilloscopes. And every TAS has its entire acquisition system (including the vertical, horizontal and trigger functions for each input channel) housed on a proprietary hybrid circuit.

The result is a kind of scope on a chip.

One with 75% fewer parts and far greater reliability. In fact, the TAS is three times more reliable than previous scopes.

comes with smashing features like AutoSet, on-screen cursors and readout, dual timebases, and save and recall settings. Plus a unique user interface that makes the 60 MHz TAS 455
and 100 MHz TAS 465 easier to use and dramatically unlike any other analog scope.

A claim that is further backed up by their remarkably affordable price.

But then a lot of performance for not a lot of money is exactly what the TAS is all about.

Scopes that add to a long list of low-cost Tektronix products. Like our handheld 60 MHz 224

digitizing oscilloscope. \square analog/digital 2212 scope. And our family of affordable and

stackable basic test gear.
Now that's a lot to
drop on you in one ad. So to learn more about these and other economical

Tektronix products, call your
authorized Tektronix distributor today.
Or call us at (800) 426-2200, ext. 140
to place your order or for the name of the distributor

Clean Without CFCs or 1,1,1-Trichloroethane With New HCFC Blend

Tech Spray has developed a fast-acting and highly effective cleaner called Envi-Ro-Tech ${ }^{\text {M }} 1677$ (1677) that uses a formulation of HCFCs and other non-CFC chemicals.

This extremely pure product is non-corrosive, making it safe for use on most electronic equipment. Envi-Ro-Tech 1677 is effective in removing oils, greases, dirt, silicone, fluxes and similar soils.

Although Envi-Ro-Tech 1677 has universal cleaning power, its low surface tension makes it ideal for precision and microscopic cleaning.

For a sample of this, or any Tech Spray cleaner, defluxer, duster or freeze spray, contact our Technical Assistance Department toll free at 1-800-858-4043.

Envi-Ro-Tech ${ }^{\text {TM }} 1677$ (1677)
TECH SPRAY, Inc.
P.O. Box 949

Amarillo, TX 79105-0949
(806) 372-8523

CIRCLE 178 ON FREE INFORMATION CARD

AN ECONOMICAL KEYBOARD-CONTROLLED KEPCO BENCH POWER SUPPLY 75 WATTS

Choose from four Digital Power Supplies: 0-12.5V @ 6A, $0-24 \mathrm{~V}$ @ $3 \mathrm{~A}, 0-40 \mathrm{~V}$ @ 2 A or $0-125 \mathrm{~V}$ @ 0.5 A . Each one offers precise, repeatable voltage control with two current ranges. Fully protected for overvoltage or overcurrent.
Bonus: You can program the output from your PC's serial port (RS232 software included) and read back too!
The DPS is an affordable professional instrument and belongs on your bench.
Want more info? Ask for "DPS" brochure, 146-1768. Call-write-fax: Dept. MXS-87. Kepco Inc. 131-38 Sanford Avenue, Flushing, NY 11352 USA • Tel: (718) 461-7000 • Fax: (718) 767-1102. Use your VISA or MASTERCARD. Immediate delivery, 5 -year warranty.

KEPCD.
into an expansion slot on his PC and observes the included LED lamps. Green LED's indicate a good power supply. Red or yellow LED's indicate problems. The unit tests each of the four voltages for highor low-voltage conditions and the presence of ripple or noise. A built-in latch detects spikes and transients. A connector on the card allows the user to test power supplies before they are installed in the user's computer.

The Power Good card is priced at \$139.95.-Sibex Inc., 1040 Harbor Lake Drive, Safety Harbor, FL 34695 :

Phone: 813-726-4343; Fax: 813-726-4434.

FM COMMUNICATIONS RECEIVER. A small handheld FM radio receiver is now available for security, communications, and recreational monitoring. The Model R10 FM Communications Interceptor from Optoelectronics is classified by the FCC as a communications test instrument. It can measure deviation (wide and narrow band), relative signal strength, signaling tones (CTCSS), and other demodulated FM. The receiver can also test VHF, UHF, and cellular radio transmitters.
According to its manufacturer, Model R10, unlike conventional radio receivers or scanners, receives any strong signal present, and is actually stabilized by the received signal. The company says the Model R10 does not have to be tuned to a specific frequency to receive a signal. Any FM signal from 30 MHz to 2 GHz can be intercepted without any gaps in coverage.
The Interceptor works best in the near-field, the

region surrounding a transmitter where signal strength is high but falls off rapidly with increasing distance. The receiving range varies, depending on the presence of strong signals in adjacent bands. But distances of 200 to 400 feet from a 5 -watt UHF or VHF transmitter are typical for Model R10.
The unit is completely automatic for hands-free operation, and is small enough to be carried in a shirt pocket. For test applications, demodulated audio output is available from a stereo phone jack. The R10 also has a built-in speaker.
A lock-release pushbutton frees the unit to lock onto a different signal. This feature is handy when several relatively large signals are present. Dual ten-segment bargraphs indicate deviation and relative signal level. A pushbutton switch selects wide- or narrowband bargraph calibration. An internal rechargeable battery pack provides up to six hours of operation.

The Model R10 FM Communications Interceptor is priced at $\$ 359$.- 0 ptoelectronics Inc., 5821 NE 14th Avenue, Fort Lauderdale, FL 33334; Phone: 800-327-5912 or 305-771-2050; Fax: 305-771-2052.

ㅇ $\$ 19^{95}$

Standard Features - Models 100, 150, 200 \& 400 - AC \& DC VOLTAGES - DC CURRENT - RESISTANCE - CONTINUITY TESTER - Buzzer - DIODE TEST - $31 / 2$ Digit LCD - LOW BATTERY INDICATOR - ACCURACY $+1-0.5 \%$ RDG

Standard Features - Models 92, 93, 94 \& 95

- DC/AC VOLTMETERS - AC/DC CURRENT - OHM METER - FREQUENCY COUNTER to 4 MHz - AUDIBLE CONTINUITY TESTER - DIODE TESTER - MAX/MIN AVERAGE MEMORY RECORD - RELATIVE MODE - 10A HIGH-ENERGY FUSE PROTECTION - DATA HOLD - AUTO SLEEP \& AUTO POWER OFF

PERFORMANCE Mus Complete with above Standard Foatures plus

 Modol 92 \#990109 WATER RESISTANT (92894 Models only). $\$ 11025$ YEAR WARRANTY, YELLOW HOLSTER, PROBES, BATTERY, FUSE, STANDComplete with Standard \& Model 92 Features plus LOGIC PROBE, CAPACITANCE TESTER,
DIAGNOSTICTM:
Model 93 \# 990110
${ }^{5} 149^{95}$
engine anal yzer mu Model 95 \# 990112
$\$ 199^{95}$ TRANSISTOR TESTER, TEMPERATURE TESTER \& K-TYPE PROBE, HIGH VOLTAGE WARNING BUZZER

Complete with Standard \& Model 92 Features plus TEMPERATURE, TACHOMETER \& DWELL ANGLE TESTER, DUTY CYCLE, 10 MEGA OHM IMPEDANCE, ANALOG BAR GRAPH, K-TYPE TEMP PROBE, ALLIGATOR CLIP TEST LEADS, INDUCTIVE PICKUP CLIP, 6' TEST LEADS \& CARRY CASE

10 HUB DRIVE MELVILLE, NY

11747
MIC \& VISA

The Ultimate Meter
TRUE RMS - LCR - Hz - dBm

12 INSTRUMENTS IN ONE - DC VOLTMETER, AC VOLTMETER, OHMMETER, ACCURRENT, DC CURRENT, DIODETESTER, AUDIBLE CONTINUITY TESTER, dBm, FREQCOUNTER,CAPACITANCEMETER, INDUCTANCE METER, LOGIC PROBE \$ $\Rightarrow 95$
0.1% ACCURACY Water on DC Voltages \quad Resistant

10 MEGA OHM IMPEDANCE

 RELATIVE MODE / DATA HOLD MAX/MIN AVERAGE MEMORY RECORD 10A HIGH-ENERGY FUSE PROTECTION AUTO SLEEP \& AUTO POWER OFF with BypassCases for 90 Series Meters Rogular Padded Zippered... ${ }^{\text {s }} 9.95$ (empo116)

ELECTRONICS WORKBENCH SOFTWARE. Interactive Image Technologies Ltd. calls its Electronics Workbench software "the electronics lab in a computer." The program in a computer is said to allow users to design, assemble, and test analog and digital circuits by simulation. The company recommends its software for teaching electronics, electronics experimenting, and the prototyping of circuits. The patterns on the computer screen are identical to those that would be displayed on an oscilloscope in an actual test procedure.

CIRCLE 22 ON FREE INFORMATION CARD

The program consists of two modules: the analog module permits the simulation of electronics components and transistors as they would be done with hardware in a real lab. The digital module provides simulated ideal digital components and instruments needed to build and test logic circuits. The analog module includes SPICE simulation. This permits both transient and steadystate analysis.

Among the components that can be simulated with the software are resistors, capacitors, inductors, transformers, diodes. LED's, bulbs, fuses, Zener diodes, and transistors. Both AC and DC voltage and current sources can be
simulated. A function generator provides square, triangular, and sinusoidal waves for test purposes. and a multimeter, dualtrace oscilloscope, and a bode plotter can be called up for making simulated on-screen measurements.

The digital module permits the simulation of ideal logic: and, OR, XOR, NOT, NAND, and NOR gates. Also available in the program are RS, JK, and D-flip-flop functions, a half adder, and a seven-segment LED display. The user can call up a voltmeter and an eightchannel logic analyzer to check out his work. Both logic conversion and simplification can be performed with the software.

Three versions of Electronics Workbench are available:

- IBM-compatible Profes-sional-a color version that supports a math coprocessor.
- Personal Plus-for IBM PC's and compatibles, a monochrome alternative.
- Macintosh Programavailable in monochrome only.

The Professional Version of Electronics Workbench is priced at \$299.-Interactive Image Technologies Ltd, 908 Niagara Falls Boulevard, North Tonawanda, NY 14120-2060; Phone: 416-361-0333: Fax: 416-368-5799.

DC-TO-AC POWER INVER-

TER. Progress is still being made in the development of DC-to-AC power inverters, according toStatpower Technologies. The company says its new PROwatt 800 12-volt DC to 115 -volt AC power inverter is designed for industrial applications and has a power output of 1000 watts for 10 minutes, 900 watts for 30 minutes and 800 watts continuous.

CIRCLE 23 ON FREE INFORMATION CARD

The PROwatt inverter is packaged in a small case measuring $3 \times 9 \times 10$ inches and weighs five pounds. It can produce very high temporary power levels to run loads with high starting surge requirements (such as compressor motors). An LED bar-graph display provides continuous information on battery voltage and power draw. The unit can be easily connected to any deep-cycle storage battery.
PROwatt's low no-load current draw easily permits the conversion of most of a vehicle's battery power to usable AC power. Solidstate circuits regulate the output voltage and frequency. Prowatt's modified sinewave output is suitable for most electric motors and inductive loads. The output waveform does not change as the input voltage rises or falls. This permits it to power computers, test equipment, TV's, VCR's, and CCTV equipment from an automotive supply.
PROwatt 800 shuts down if the battery voltage exceeds its high and low limits. Audible alarms and LED indicators warn of faults so that corrective action can be taken. Once a fault is corrected, the unit will automatically restart.
The PROwatt 800 is priced at \$499.-Statpower Technologies Corporation, 7725 Lougheed Highway, Burnaby, BC, Canada, V5A 4V8: Phone: 604-420-1585: Fax: 604-420-1591.

RGB VIDEO GENERATOR.
This programmable RGB video generator is intended for use in the design, production, service, and quality control of the most advanced computer-driven CRT and LCD monitor displays. The Leader model 1605 handles pixel rates to 300 MHz . Its graphic user interface uses on-screen menus and graphic displays with mouse control to provide visual guidance in raster assembly, pattern selection and design, signal drive options, storage, and retrieval. Waveforms are displayed to help in organizing rasters, and patterns are assembled on the screen with a palette of 256 colors from a range of 16.7 million colors. As

CIRCLE 24 ON FREE INFORMATION CARD

many as 100 addresses can be stored in both RAM and ROM and storage capability can be expanded to 1800 addresses on the built-in floppy disk. EPROM's can be programmed by the this video generator without additional equipment, and it will accept data from all earlier Leader RGB video generators. High-speed data transfer can be carried out with analog. TTL, and ECL outputs. Those outputs have a wide range of sync options including tri-level sync, half-line equalizers. and serrations.

The Model 1605 RGB video generator is list priced at $\$ 18,500$.-Leader Instruments Corporation, 380 Oser Avenue, Hauppauge, NY 11788; Phone: 800-645-5104 (in NY. 516-231-6900).

R-E

Graduate as a Fully Trained Electronics Professionall

If you want to learn about electronics. and earn a good income with that knowledge, then CIE is the best educational value you can receive.

CIE's reputation as the world leader in home study electronics is based solely on the success of our graduates. And we've earned our reputation with an unconditional commitment to provide our students with the very best electronics training.

Just ask any of the 150,000-plus graduates of the Cleveland Institute of Electronics who are working in highpaying positions with aerospace, computer, medical, automotive and communications firms throughout the world.

They'll tell you success didn't come easy...but it did come...thanks to their CIE training. And today, a career in electronics offers more rewards than ever before.

CIE'S COMMITTED TO BEING THE BEST...IN ONE AREA...ELECTRONICS.

CIE isn't another be-everything-toeveryone school. CIE teaches only one subject and we believe we're the best at what we do. Also, CIE is accredited by the National Home Study Council. And with more than 1,000 graduates each year, we're the
largest home study school specializing exclusively in electronics. CIE has been training career-minded students like yourself for nearly sixty years and we're the best at our subject....ELECTRONICS...BECAUSE IT'S THE ONLY SUBJECT WE TEACHI

CIE PROVIDES A LEARNING METHOD SO GOOD IT'S PATENTED.

CIE's AUTO-PROGRAMMED* lessons are a proven learning method for building valuable electronics career skills. Each lesson is designed to take you step-by-step and principle-byprincipal. And while all of CIE lessons are designed for independent study. CIE's instructors are personally available to assist you with just a toll free call. The result is practical training... the kind of experience you can put to work in today's marketplace.

LEARN BY DOING..WITH STATE-OF-THE-ART EOUIPMENT AND TRAINING.
CIE pioneered the first Electronics Laboratory Course and the first Microprocessor Course. Today, no other home study school can match CIE's state-of-the-art equipment and
training. And all your laboratory equipment, books and lessons are included in your tuition. It's all yours to use while you study and for on-thejob after you graduate.

PERSONALIZED TRAINING....TO MATCH YOUR BACKGROUND.

While some of our students have a working knowledge of electronics others are just starting out. That's why CIE has developed twelve career courses and an A.A.S. Degree program to choose from. So, even if you're not sure which electronics career is best for you, CIE can get you started with core lessons applicable to all areas in electronics. And every CIE Course earns credit towards the completion of your Associate in Applied Science Degree. So you can work toward your degree in stages or as fast as you wish. In fact, CIE is the only school that actually rewards you for fast study, which can save you money.

> SEND FOR YOUR CIE COURSE CATALOG AND WE'LL SEND YOU A FREE 24-PAGE CIE ELECTRONIC SYMBOLS HANDBOOK.

FRㅋㅋㅋㅜ
SEND FOR YOUR CIE HOME STUDY COURSE CATALOG AND RECEIVE A FREE 24 PAGE CIE ELECTRONIC SYMBOLS HANDBOOK!

Includes hundreds of the most frequently used electronic symbols. Published exclusively by CIE for our students and alumni. Yours free when you request a CIE Course Catalog

YESII want to get started. Send me my CIE course catalog including details about the Associate Degree Program. (For your convenience, CIE will have a representative contact you - there is no obligation.)

- Please print clearly

Name

Address
City
Zip
Age
Phone No. (__)
Check box for G.I. Bill Benefits
\square Veteran \square Active Duty

1776 East 17th Street Cleveland, Ohio 44114

A School of Thousands.
A Class of One. Since 1934.

Use The Free Information Card for fast response.

1993 CATALOG; from Radio Shack, 700 One Tandy Center, Fort Worth, TX 76102; free at local Radio Shack Stores.

Radio Shack's 1993 catalog has a redesigned layout and organization as well as a lot of new products. The 172-page, fullcolor, magazine-sized catalog now has a "Quick Index" up front, and a complete index at the end. New products highlighted in this edition include the Duofone ET-499 voicescrambling cordless telephone. It scrambles the transmission between the handset and the base so

people with nearby scanners can't eavesdrop on your conversations.
Others are the Memorex Model 8008 mm home VCR with stereo sound and the portable Model 17 8 mm VCR/TV combination, both with 179-channel TV tuners. Tandy is offering

Go ahead, put on some weight

 bose. A new, potented, internal modification to the 300 split boll locking mechonism allows it to hold twice as much weight os its predecessor. Of course, the 372 still comes with the industry's best circuit boord holder, the PonoVise 315, which can hold PCBs up to 12 inches wide (up to 28° with $30^{\circ} 318$ Accessory Cross Bors.) You con even handle multiple boords when you use odditional 316 Circuit Board Arms. The new PonoVise 372 Circuit Boord Holder. When cirtuit boards ore your business.

1485 Southern Woy • Sparks, NV 89431 • (702) 353-2900 • FAX (800) $395-8002$
a $25-\mathrm{MHz}, 486$-based multimedia PC that includes a wide selection of software for voice mail, communications, travel planning, and more.

Also included in the 1993 catalog are telephones and accessories, pagers, scanners, world-band transceivers, VHS VCR's, remote controls, and automotive sound systems. There are also entries on home-control products. batteries, flashlights, multiuse testers, remote-controlled toys, computer based language and information sources, calculators, personal organizers, and notebook PC's.

21ST-CENTURY ELEC. TRONIC PROJECTS FOR A NEW AGE; by Delton T. Horn. TAB Books, Division of McGraw-Hill Inc., Blue Ridge Summit, PA 17294-0850; Phone: 1-800-822-8138; \$16.95.

The term "New Age," usually associated with mysticism, music, and cultural fads, has now been applied to electronics projects by Mr. Horn in his new book. This volume-from a well known and prolific writerpresents an array of unusual electronic projects intended to test and demonstrate theories underlying New Age beliefs.

Included among the projects in the book are a dualLED visual hypnotic aid, an alpha-wave biofeedback monitor, a two-choice ESP tester, a negative-ion generator, a biorhythm clock, a Kirlian photography experimental circuit, and a mag-netic-field tester. Mr. Horn does not take a stand ei-

CIRCLE 39 ON FREE INFORMATION CARD
ther for or against the theories that are the subjects of his experiments. However, the underlying concepts are fully explained.

1992/1993 DISCOUNT TEST

 EQUIPMENT CATALOG. Print Products International, 8931 Brookville Road, Silver Spring, MD 20910; Phone: 1-800-638-2020 or 1-301-587-7824; Fax: 1-800-545-0058 or 1-301-585-5402; free.Here is another discount equipment catalog. This one has 68 pages filled

CIRCLE 38 ON FREE INFORMATION CARD

with entries on bargainpriced test and measurement equipment from such well-known manufacturers as Kenwood, $\mathrm{B}+\mathrm{K}, \mathrm{Av}$ com, Pace, Philips, Hitachi, and Leader. Included in the catalog's coverage are oscilloscopes, power supplies, meters, and spectrum analyzers. In addition, the catalog describes new lines of closed-circuit TV systems for security and monitoring.

R-E

Master Electronics with TAB／McGraw－Hill，Inc．

INTERNATIONAL ENCYCLOPEDIA OF INTEGRATED CIRCUITS－2ND ED．
Find the circuits you need fast．This all－in－one reference gives you complete descriptions of：circuit functions and uses，pinout diagrams with external connections，tables and charts，and manufacturer data． 1,168 pp．， 4,000 illus．
＊3802H，$\$ 84.95 \div$ ．．．．NOW ONLY $\$ 44.95$
MICROWAVE OVEN REPAIR－2ND ED． Save hundreds of dollars in microwave oven repair． Service low－and high－voltage problems－locate and replace the magnetron－repair oven motors and control circuits－and test for microwave leak－ age． 368 pp ．， 366 illus． $\mathbf{4 3 4 5 7 \mathrm { H } , \mathbf { \$ 2 9 . 9 5 }}$

TROUBLESHOOTING AND

REPAIRING SOLID－STATE TVs

-2 ND ED．Zero in on solid－state TV problems with this hands－on guide．You＇ll be able to repair virtu－ ally any malfunction，including：remote controls， power supplies，sweep circuits，chassis，picture tubes，and tuners． 624 pp．， 698 illus． ＊3700H，$\$ 36.95$

Pass the CET exam with ease！

CET EXAM BOOK－3RD ED．
Use the many sample tests in this brand－new edition to increase your knowledge of repairing and maintaining electronic equipment． 304 pp．， 180 illus． $\mathbf{4 4 1 9 9 H}$ ， $\mathbf{\$ 2 7 . 9 5}$

CET STUDY GUIDE－3RD ED．

Identify the gaps in your electronics know－ how－and learn about the theories and princi－ ples involved－with this new guide＇s sample questions and advice． 320 pp．， 200 illus． ＊4076H， $\mathbf{5 2 7 . 9 5}$

$$
\text { SAVE Order both guides (} \mathbf{2 5 8 6 2 7 4 - 3 \text {) }} \text { for only } \$ 49.00 \text { (regularly } \$ 55.90 \text {) }
$$

PRACTICAL ANTENNA HANDBOOK

Get the step－by－step instructions you need to install and utilize a variety of antennas，including－mo－ bile－shortwave－dipole－multi－band－long－ wire directional－marine radio－VHF／UHF －microwave－and more． 439 pp．， 351 illus．
＊3270H，\＄32．95

HOME VCR REPAIR ILLUSTRATED
Save hundreds of dollars in repair bills by fixing your own VCR－no expensive equipment or experi－ ence required！You＇ll repair－picture and sound －fast forward and rewind－dc motors－roller guides－audio heads－and more！
400 pp．， 459 illus． $\mathbf{3} 3711 \mathrm{H}, \mathbf{\$ 2 9 . 9 5}$

MAINTAINING AND REPAIRING

VCRS－2ND ED．Get the details on repairing all types of VCRs：VHS HQ， 8 mm ，and camcorders． You get in－depth coverage of：every mechanical system and electronic circuit used in VCRs，the use of test equipment including Sencore SC61 and VC63，high－quality（HQ）camcorders，and special VCR circuits． 352 pp．， 370 illus． $\mathbf{2 3 1 0 3 H}$ ， $\mathbf{\$ 2 7 . 9 5}$

SIMPLIFIED PRACTICAL FILTER
DESIGN Easy－to－follow techniques show you how to lay out and assemble practical，working filters．You＇ll easily design all these filters：low－ pass，high－pass，band rejection，M－derived，compos－ ite，crystal，and even crossover networks． 200 pp．， 137 illus．\＃3355H，\＄26．95

₹ To Order Call Toll－Free 1－800－822－8158 24 Hours A Day

FAX orders：1－717－794－2080 • Or mail coupon to：TAB／McGraw－Fill，Inc．Blue Ridge Summit，PA 17294－0840

Satisfaction Guaranteed－Within 30 days， pay the stated amount（plus shipping，han－ dling，and state and local sales tax）or return book（s）and owe nothing．

Please send me the book（s）below for a FREE 30－Day exam：

BookTitle Qty． Price			

Name \qquad Address

City

State
Zip

Signature

Orders outside the U．S．must be prepaid in U．S．funds drawn on U．S．banks and include $\$ 5.00$ for postage and handling．Prices subject to change．Limit 3 books on a 30 －day trial only．Orders of 4 books or more must include payment．Shipping and handling charges will be billed to your account．Order invalid with－ out signature．

RE1228

TECHLINE ${ }^{\text {TM }}$ Tools-The new standard in strength and precision!

- Precision-crafted with top-quality materials
 m Designed for long life and ease of use - Backed by Radio Shack's 1-Year Limited Warranty

 New TECHLINE tools represent Radio Shack's uncompromising dedication to quality. Each is precision-crafted of long-lasting, hard-working materials and employs the latest design innovations for comfort and ease of use. And, each is backed by our full 1-year limited warranty.
Speedy service and low prices on thousands of parts and accessories!

\llbracket FREE delivery to Radio Shack on orders $\$ 5$ and up - Semiconductors and ICs \llbracket Hard-to-find batteries

- CB and scanner crystals \equiv Long-life vacuum tubes
- Phono cartridges/styli a SAMS ${ }^{\text {® }}$ service books

Why pay more for mail-order? Your Radio Shack stocks 1000 electronic components, and another 15,000 are available fast from our special-order warehouse. Ordering is easy! Bring in the exact part number (or old part). We'll check availability and order by phone. Delivery time to your nearby Radio Shack for most items is a week.

(1) Picofarad 50-Pack. Delight for tweakers. 50 ceramic capacitors, assorted 1 to 33 pF values. 50 WVDC. \#272-806 2.99 (2) Efficient PC-Mount Piezo Buzzer. Tiny yet has 70 dB output and requires only 7 mA at 12 VDC . \#273-074
. 2.99
(3) Omnidirectional ElectretType Mike Element. $30-15,000$ Hz .4 to 10 VDC. \#270-092, 2.99

Test-Equipment Adapters. Great for use with scopes, frequency counters and multimeters. Hook up with the best.
(1) Binding Posts to BNC Plug. 50 ohms impedance.
\#274-715
2) Binding Post to Banana Plug \#274.716 Set of 2/4.95
(3) Stackable Dual-Inline Banana Plug. \#274-717 2.99

Resistor Assortments. Popular values-stock up and save.

Description	Cat. No.	Set of	Price
Metal-Film $1 / 8 \mathrm{~W}$	$271-309$	50	2.29
Carbon $1 / \mathrm{WW}$	$271-308$	100	2.99
Carron Film $1 / 4 \mathrm{~W}$	$271-312$	500	7.95
Carbon $1 / 2 \mathrm{~W}$	$271-306$	100	3.49

Mini Audio Amp With a Built-in Speaker. Many uses! Tough $33 / 9^{\prime \prime}$ high case. Low Radio Shack price. \#277-1008 11.95

(1) Magnet Wire Assortment. For custom coil winding. Includes 40 feet of 22 -gauge, 75 feet of 26 gauge and 200 feet of 30 -gauge on spools. \#278-1345 4.99
(2) Dial Cord Fix-It Kit. Our exclusive! Includes six feet of highstrength cord and three tension springs. Put a radio back into action! \#274-435 99 9

PC/XT Circuit Card. Epoxy. Fits computer expansion bus. $101 / 16^{n}$ long. \#276-1598 29.95 Right-Angle D.Sub 25 Female Connector for Above. \#276-1504 ... 2.69

Infrared Project Box. Ideal for a remote. Has removable infraredtransparent end panel and space for 9 V battery. $7 / 8 \times 23 / \mathrm{a} \times 4^{1 / 4^{\prime \prime}}$.
\#270-294

100-Watt Soldering Gun. For big jobs! Reaches full temperature in seconds. Built-in work light. Replacement tips in stock. UL listed. \#64-2193 11.95

Prices apply at participating stores and dealers.

GUITTER GLOBE

WED LIKE TO PRESENT ONE OF THE most unusual construction projects you re likely to build. Calling the Glitter Globe simply a construction project does not do it justice-calling it an electronte sculpture is more aceurate. This is a challenging project, and not for the inexperienced bullder Bullding the Glitter Globe is a lot like building a model airplane or car, because the quality of your workmanship will be very evident in the finished appearance of the circuit. You can't hide sloppy construction inside a case!
The Glitter Globe is perhaps the world's most sophisticated Christmas ornament: it's construeted entirely of electronic components and very small circuit boards. Each circuit board holds a pair of LED's that chase each other around the globe, creating the illusion that the globe is spinning. The LED's can be the same or different colors, and at least 12 LED's light up at each step. One diagonal line of LED's is always one step ahead of another, creating the illusion that the Glitter Globe is spinning.
Two different animations are possible depending on the value of a resistor (R2): the globe can appear to accelerate and decelerate smoothly over a time period of about 20 seconds, or it can slow gently until almost stopping, and then accelerate quiekly. The cycle then repeats. The glabe can hang from its power cord in a Christmas tree or lie on any flat surface.
The small PC boards used to. make the Glitter Globe can also be hidden in various places (other than as partof the Glitter Globe), such as in clothing of behind photographs, to ade lights at strategic places. Art forms of this kind are rather popular.
The Giltter Globe is a geodesic sphere; the particular shape is a star-dodecahedron with twenty
vertices, which is one of two star-dodecahedra known as the star polyhedra of Kepler. The other star polyhedra has twelve vertices, and could also be constructed from the Glitter Globe's board set
varies the acceleration of the globes apparent rotation by integrating a DC voltage to the trip point of a Schmitt trigger (ICI-b). After ICl-b trips, ICI-a integrates in the opposite direefion until the other trigger

Circuit description

Figure the the schematic for the Gifier Globe, which is powered froutd 12 -volt DC supply. If can therefore be powered from a war's cigarette lighter.) The firs stage of the eircuit is a trianglessawtooth waveform generator made from IC1-a and b. which are pait of anLM3900 quad-amplifieretip: This stage
point is reached. Increasing the value of Cl will lengthen the time period between accelerations. Resistor R2 is set at 2 megohms for a triangle wave output and 200 kilohms for a negative-ramp sawtooth output.

The output of the waveform generator goes to the input of $\mathrm{ICl}-\mathrm{c}$. a voltage-controlled os-

FIG. 2-THE GLITTER GLOBE'S BOARDS are supplied on a breakout panel.

FIG. 3-CONTROL BOARD PARTS PLACEMENT. Capacitors C1 and C2, and all of the transistors, except Q1, are installed on the solder side of the board. The " c " silkscreened on the board indicates the collector lead of each transistor.

FIG. 4-YOU CAN MAKE a softball-sized star dodechehedra by forming all the structural resistors and jumpers approximately $3 / 4$-inch long. The pentagon boards stick out a little more than the hexagon boards.
cillator (VCO). The VCO operates very much like the waveform generator except that its voltage reference is the output of the waveform generator in-
stead of the power supply. When transistor Ql conducts, it grounds pin 2 of ICl-c and the output voltage of the integrator decreases. When the trip point is reached, Q1 ceases conduction, and the output then rises again. The value of C 2 (as well as the voltage from the function generator) determines the speed of rotation. To decrease the speed of the spin action, simply increase the value of C2.

The output of Schmitt trigger IC1-d is the input for IC2, a CD4017 decade counter. Only five outputs of the counter are used; after a count of five, the counter resets, resulting in continuous "motion" around the globe.

Since the outputs of IC2 cannot provide enough current to

FIG. 5-YOU CAN MAKE a hardball-size star dodechehedra by keeping all the structural resistors and jumpers approximately $1 / 2$-inch long.
drive a dozen or more LED's, transistor pairs (a PN2222 and a PN2907) are used to drive them. A high output from IC2 turns on the NPN transistors (the PN2222's) and a low output turns on the PNP transistors (the PN2907's). The output of IC2 that is high will turn on the PN2222 transistor connected to it, which sources the LED current. The current is then drained through the two PN2907 transistors on the adjacent outputs.

Zero-ohm resistors (jumpers) distribute power around the globe. Plain wire jumpers could be used, but the zero-ohm resistors look much better. Cur-rent-limiting 680 -ohm resistors (one for each LED pair) ensure that less than 20 milliamperes passes through each forwardbiased LED during conduction.

The LED's are all connected back to back so that current flow in one direction lights one, and current flow in the other direction lights the other. That way a color orientation is maintained as the Glitter Globe steps around its five outputs.

Conduction through one LED limits the reverse voltage across the opposite LED. That's not a concern, except with blue LED's which have a reverse-voltage limit of only 5 volts.

Assembly

Before beginning assembly, have the following tools on hand: a small vise or clamp to hold the globe steady as you work, a pair of needle-nose

PARTS LIST

All resistors are $1 / 4$-watt, 5%.
R1, R6-2 megohms
R2-1 megohm for triangle wave,
200,000 ohms for sawtooth wave
R3- 100,000 ohms
R4, R10, R11- 1.2 megohms
R5- 120,000 ohms
R7-1 megohm
R8- 10,000 ohms
R9, R13-1000 ohms
R12, R14-R44-680 ohms
Capacitors
C1- $10 \mu \mathrm{~F}, 16$ volts, nonpolarized electrolytic
$\mathrm{C} 2-1 \mu \mathrm{~F}, 16$ volts, nonpolarized electrolytic
C3- $10 \mu \mathrm{~F}, 25$ volts, tantalum electrolytic
Semiconductors
IC1-LM3900 quad amplifier
IC2-CD4017 decade counter
Q1-Q6-PN2222 NPN transistor
Q7-Q11-PN2907 PNP transistor
Miscellaneous: 64 LED's (any color), 28 structural resistors (680 -ohm units will match the rest of the resistors), 25 zero-ohm jumpers, 12 -volt DC $300-\mathrm{mA}$ wall transformer, PC board set, solder, etc.
Note: The following items are available from Art Works, 415 E. Emerson Street, Saint Francis, Kansas 67756:

- Set of 32 PC boards, supplied on a breakout panel$\$ 30.00$ each, three or more are $\$ 25.00$ each
- Complete Glitter Globe kit (includes PC board, $\mathbf{3 0 0}-\mathrm{mA}$ wall transformer, 64 LED's, and all components)- $\$ 65.00$ each, three or more are $\$ 55.00$ each All prices include taxes, shipping, and handling. Please state LED color preference (red, green, or yellow); colors can be mixed. Visa/Mastercard orders (800) 486-6862. For technical assistance call (913) 332-2726. Blue LED's are not available with the kit.
pliers, a small file, a pair of clippers, and a desoldering tool or desoldering braid.

All of the Glitter Globe's boards are supplied on a breakout panel (see Fig. 2). The control board should be assembled first; its parts-placement diagram is shown in Fig. 3. Remove the control board from the breakout panel and file off the excess material.

Insert the components into the control board, making sure that the IC's are inserted correctly and that the tantalum capacitor (C3) is inserted with the proper polarity. Capacitors Cl and $C 2$, and all of the transistors, except Q1, are installed on the solder side of the board. The "c" silkscreened on the board indicates the collector

FIG. 6-TO MAKE A SPHERICAL GLOBE, all of the resistors and jumpers that connect to any five-point board (levels 2,5 , and 7) must be preformed to $5 / 8$ inch, with the rest remaining $3 / 4$-inch.
lead of each transistor. Looking at the flat side of the transistors with the leads pointed down, the leads are, from left to right, emitter, base, and collector.

In the center of the control board there is a hole for soldering a loop of wire that acts as a strain relief for the power leads. Strip and tin the ground and power wires from the transformer, and then insert them through the center support loop before soldering them into the PC board. The transformer included with the kit (see the Parts List) has the positive lead marked with a white stripeother transformers can be marked with the opposite convention, so be sure to check the polarity before soldering!

Test the control board to make sure that it works correctly before building the rest of the globe. When powered up, the two LED's on the control board should light sequentially, and then stay off for a brief time. The flash rate change will be

FIG. 7-THIS "COMPONENT MAP" shows how the level $1-4$ pieces connect together. All connections marked " J " are zero-ohm jumpers, all connections showing a resistor symbol must be 680 ohms, and all unmarked connections can be made using any material you like.
very obvious. Unplug the transformer before continuing.

The LED boards are numbered on one side in groups from 1 to 7. Groups 1-6 contain five boards each; group 7 is just a single board. The numbers represent the levels away from the controller board in which the LED boards are installed. For example, level-1 boards are installed immediately around the controller board, level 2 surrounds level 1,3 surrounds 2 , and so on. All boards in each level are identical. Locate the numbered side of each board on the inside of the globe, with the LED's on the outside. Putting the numbers on the outside of

FIG. 8-IF YOU USE $3 / 4$-inch spacing, level 1 mounts as shown in a; for $1 / 2$-inch spacing, level 1 mounts as shown in b.
the globe will result in the diagonal power busses (and thus the lighting pattern) running the other way, although the spin direction will remain unchanged. Also, always position the LED boards so that the numbers on their inside surfaces are pointing away from the control board.

Solder the LED's into the small PC boards before removing them from the breakout panel. If you are making a globe with two colors, one color should always be on the left, and the other on the right. Because changing a defective LED can be very difficult after the globe is assembled, test all LED's before soldering. Some multimeters can quickly check LED's; otherwise set up a DC power supply and current-limiting resistor to make sure all the LED's work. The LED's are installed in the boards with their cathodes facing each other (with the flat sides toward each other). Clip excess leads after soldering.

It's much easier to keep the small boards oriented correctly while adding them to the globe

FIG. 9-LEVEL 5-7 COMPONENT MAP. The letters surrounding the two halves in Figs. 7 and 9 indicate the connections between them. Install each level in order from 1 to 7.
if you remove them from the panel only as needed. When you remove the boards from the breakout panel, use a small file to remove any excess material.

Shapes

The least difficult shape to complete is the star dodechehedra. That's the shape that results if all the structural resistors and jumpers are preformed to the same length-approximately $3 / 4$-inch. Their actual lengths are not critical, as long as they are all equal. That results in the pentagon (five point) boards sticking out a little more than the hexagon (six point) boards (see Fig. 4). With $3 / 4$-inch spacing, the globe will be about the size of a softball.

It is possible to construct a globe with a uniform resistor spacing of $1 / 2$-inch, but this should be attempted by only the most skilled assemblers. That results in globe the size of a baseball (see Fig. 5). Once you decide on the proper lead spacing for the globe you wish to build, use a bending jig to make all components the same length. If you don't have a real bending jig, cut a piece of wood to the proper width ($1 / 2$-inch, $3 / 4$ inch, etc.), and make a depression in it for the body of the component. You can do that by pressing an unneeded resistor into the wood to leave an impression. (Try to center the impression within the width of the wood.)

Although it might seem to be easier to loop the resistors and jumpers through the boards, it is not recommended because they are difficult to remove later, in case of an error. It's best to put the lead straight through the PC board, and then snip it off after soldering. If a repair is necessary, the lead can then be lifted straight out after remelting the solder.

To make the globe into a spherical shape about the size of a softball, all of the resistors and jumpers that connect to any five-point board (levels 2,5 , and 7) must be preformed to $5 / 8$ inch, with the rest remaining $3 / 4$ -inch (see Fig. 6).

Continued on page 85

Now you don't have to be enrolled at CIE to receive our introductory Electronic and Electricity Lesson Modules. This program is available for a limited time to nonstudents for the shockingly low price of only $\$ 99.50$.

With CIE's patented AUTO-PROGRAMMED method of learning you will quickly learn and then master the basics of electronics and electricity and then move on to... DC/AC circuit theories, fundamentals of bi-polar junction transistors (BJT), field effect transistors (FET), wiring, diagram and schematic readings, component identification, soldering techniques... and much, much, more. This introductory offer includes the first 39 lessons in CIE's Associate in Applied Science in Electronic Engineering Technology Degree.

Your commitment to CIE ends with your payment, but CIE's commitment to your success just begins when you receive your lessons, exams, binder and equipment. This special introduc-
tory price includes all the benefits and assistance CIE normally extends to its full time students. You'll be entitled to unlimited access to CIE's faculty and staff to assist you in your studies via a toll free 800 number six days a week, 24 -hour turnaround on grading your submitted exams, CIE bookstore privileges, a patented learning method, reference library, access to CIE's electronic bulletin board and a free issue of CIE's school newspaper The Electron.

And best of all, when you decide to continue your electronics education in any of CIE's programs you'll receive full academic credit for successful lessons

submitted and a $\$ 100.00$

 Tuition Credit Certificate.All this knowledge and support will put you on the road to understanding digital electronics, automotive and industrial electronics, microprocessing principals, computer systems, telecommunications and much, much, more.

- \$100.00 Tuition Credit
- Academic Credit
- Free issue of The Electron
- Build your personal burglar alarm
- Toll Free Instructor Assistance
- 24-hour grading
- CIE bookstore privileges

All This For Only!

- 39 theory and hands-on training lessons and exams.
- Patented learning method
- CIE electronic bulletin board privileges

\square Yes! Send me CIE's Introductory Electronic and Electricity Lessons and Equipment.
 A7316

Name: \qquad
Street: \qquad Apt\#: \qquad
City:
State: \qquad Zip:

Age: \qquad Phone: (
NWFIME
BOOKSTORE
1776 East 17th Street Cleveland, Ohio 44114

Total Merchandise:
$\$ 99.50$
Ohio Residents add 7\% Sales Tax:
California Residents add $61 / 2 \%$ Sales Tax:
Total This Order: \qquad
Shipping and Handling Charge: $\$ 5.00$
Method of Payment/Amount Enclosed: \qquad \$
\square Personal Check or Money Order
\square Master Card \square Visa Discover
Card Expiration Date:
Signature:
9 AM to 4:30 PM Eastern Time: 1-800-321-2155 ext. A7316

2120-20MHz Dual2125-20MHz Delayed Sweep
e$\$ 539$$2160-60 \mathrm{MHz}$ Dual Trace, Delayed Sweep,Dual Time Base
$\qquad$$\$ 949$Delayed Sweep
\qquad $\$ 1,395$
2522. 20 MHz HoMS /s Storage\$1,229
$1443-40 \mathrm{MHz}$ Battery / AC operated withCursor \& Readouts
$\qquad$$\$ 1,439$
SPECTRUM ANALYZER- AC/DC operation (battery included)70dB dynamic range- Resolution bandwidth of 10 kHz- 50Ω and 75Ω input impedance (switch selec-table)

Fixed bandwidth setting tor viewing TV signal $100 \mathrm{MHz}, 80 \mathrm{~dB}$ signal

Hitachi Compact Series Scopes
V-212 - 20 MHz Dual Trace $\$ 409$
V-525-50MHz, Cursors \$975V. 522.50 MHz , DC Ottsel
\qquad $\$ 749$
40 MHz, DC
\qquad \$1,095
-605A MOM Hz, DT racer
\qquad \$1,375

- 100 MHz , Dual Trace \$1,649
V-1085 - 100 MHz, QT, w/cursor 1,995
V-1100A - 100 MHz, Quad Trace \$2,195

Hitachi RSO Series

RSO's feature; roll mode, averaging, save memory, smoothing, interpolation, pretriggering, cursor measurements
VC-6023-20MHz, 20MS/s \$1,650
C.6024-50MHz, 20MS/s 1,950

VC-6045A - $100 \mathrm{MHz}, 40 \mathrm{MS} / \mathrm{s}$
\qquad Call
VC- $6145 \cdot 100 \mathrm{MHz}, 100 \mathrm{MS} / \mathrm{s}$

FLUKE MULTIMETER

Scopemeters (All Models Available Call)

Model 93	$\$ 1,095.00$	70 Series	
Model 95	$\$ 1,395.00$	Model 70II	$\$ 65.00$
Model 97	$\$ 1,695.00$	Model 77 II	$\$ 145.00$
10 Series		Model 79II	$\$ 169.00$
Model 10	$\$ 62.95$	80 Series	
Model 12	$\$ 79.95$	Model 87	$\$ 289.00$

FAK/MODEM PROTECTOR

TOM PETRUZZELLIS

SHIELD YOUR MODEM, FAX. OR ANswering machine against harmful transients arriving over the phone line by building this fast-acting Modem/Fax Protector. Then you'll be able to relax when electric storms bear down on your home or office. It's an easy, inexpensive project, and low-cost insurance for your expensive telephone-dependent equipment.

Even people who plug their computers and entertainment electronics into power-line surge protectors (and wouldn't dream of leaving them unprotected) are likely to forget about protecting modems, faxes
and answering machines from transients arriving over the phone line. Then comes the first thunder storm of the season. Before they remember to do anything about it, the innards of that equipment could disappear in a puff of smoke.

You could, of course, disconnect your telephone gadgets with a switch when they're not in use. But will you remember to do it in time? Needless to say, the switch won't help much if the devices are running when the lightning starts to flash.

Telephone electrical values
 When a telephone handset is

"on the hook"there is 48 volts DC is across the two wires designated "tip" and "ring." The green tip wire is at ground potential, or zero volts, and the red ring wire is at negative 48 volts. Approximately 21 to 35 milliamperes of current flows in this condition.

When the handset is picked up, phone-line voltage drops to 6 volts DC. The $20-$ or $30-\mathrm{Hz}$ telephone-ringing signal can be from about 100 volts to about 120 volts AC. It is superimposed across the normal 48 -volt DC signal. That "ringing" voltage determines the voltage ratings of the protective devices.

Telephone protection

Although the effects of lightning are well known, many people believe that only a direct strike on a nearby phone or power line will cause damage. However, most damage to electronic equipment is caused by voltages induced in those conductors by direct stikes elsewhere. Harmful voltages can be caused by strikes as far as 15 miles away!

Telephone circuits generally have resistive elements in each wire to protect the telephone handsets from transient spikes in excess of about 500 volts. However, this rather crude passive protection is inadequate for protecting more vulnerable electronics.

Spark-gap tubes or surge voltage protectors (SVP) have been used for many years to protect electronic circuits from manmade and natural surges arriving over either power or phone lines. They provide lowresistance paths for excessive voltage transients but appear open to normal voltages. The devices are hermetically sealed gas-discharge tubes. Typically made of ceramic with properly spaced electrodes, they are filled with a rare gas.
The main purpose of the SVP is to provide a conductive path for unwanted and excessive transients, thereby preventing the transient energy and associated voltages from damaging equipment and componentsand harming people. They are designed to switch current at a pre-established breakdown voltage.
The breakdown voltage causes the internal gas to ionize and change from a non-conducting to a conducting state. thus permitting an arc to form and short the connected wires to ground. During conduction, the SVP can monmentarily carry high currents. After the voltage transient has been discharged, the gas deionizes and the SVP is ready for another voltage transient.

The SVP is bipolar and has a symmetrical characteristic. In the restored or extinguished condition, it causes very little

FIG. 1-MODEM/FAX PROTECTOR packaged in a standard telephone jack box.
loss because of its high impedance. This characteristic contrasts with those of transient absorbtion Zener diodes and metal-oxide varistors that exhibit leakage. However, both of those devices have faster response times than SVP's.

The metal-oxide varistor (MOV or SIOV) has also been used to protect electronics connected to telephone lines. It is made from finely powdered zinc oxide mixed with binders and pressed into a disk. After firing, the disk becomes a matrix of conductive zinc-oxide grains separated by highly resistive boundaries. This property gives them a symmetrical electrical characteristic similar to the

SVP (or two back-to-back Zener diodes).

However, the MOV's breakdown time is too slow to protect connected electronics against the fastest voltage spikes caused by lightning. As a result, faster Zener diodes and SVP's have been combined in our Modem/Fax Protector.

How the protector works

The Modem/Fax Protector (Fig. 1) is shown schematically in Fig. 2. It has a typical response time of about 10 nanose-conds-fast enough to protect your equipment against the speediest voltage spikes. Zener diodes D1 and D2 are connected back-to-back in parallel with
surge-voltage protector SVP1 between the ring and the PC board earth ground connection. Similarly, Zener diodes D3 and D4 are connected in parallel with SVP2 between the tip wire and the PC board earth ground. The SVP's are rated for a nominal DC voltage of 230 volts with breakdown voltage from 195 to 265 volts DC.

The Zener diodes break down at 180 volts DC within about 10 nanoseconds to protect the telephone circuits from the fastest initial voltage spikes, and then the SVP's ionize to ground the. overcurrent. Note that the circuit has no batteries; all it really needs to protect your equipment is an effective ground.

Construction

The prototype Modem/Fax Protector was built on a small square PC board measuring $11 / 2$ inches on a side (see Fig. 3). However, point-to-point wiring techniques can also be used. Note that the board has a hole drilled through it for the screw that clamps the enclosure together and provides the ground connection.

Refer to parts-placement diagram, Fig. 4. Install all of the components as shown, observing the polarities of the Zener diodes. Solder all components in position and trim excess leads.

Obtain a small modular plastic phone jack cover with an included jack. The jack should have a short section of 4 -wire telephone cable attached. Cut off the black and yellow wires and connect the red ring and green tip wire pigtails within the box as shown in Fig. 5. Cut a bottom plate from sheet micarta, phenolic or other suitable thin but rigid insulating material slightly larger (about $1 / 16-$ inch) than the outer dimensions of the jack box. Carefully mark the location on the cover plate for a hole to accommodate the central screw so that it is opposite the hole in the jack box, and drill a hole of the same diameter through the cover.
Determine a suitable length for the four-wire telephone cable between your telephone outlet

FIG. 2-MODEM/FAX PROTECTOR schematic showing Zener diodes in parallel with surge voltage protectors.

FIG. 3-MODEM/FAX PROTECTOR circuit board assembly shown actual size.

FIG. 4-PARTS-ASSEMBLY DIAGRAM for the the Modem/Fax Protector circuit board.

FOIL PATTERN for the modem/fax protector.
or junction box and the Modem/ Fax Protector, and attach a plug to one end of that cable. Carefully form a hole in the side wall of the jack box, as shown in Fig. 5 , large enough to permit the bare end of the telephone cable
to be pulled through a distance of 3 to 4 inches. Clamp the cable with a plastic cable tie.

Strip the cable jacket back to about $1 / 8$ inch from the cable tie, select out the red ring wire and green tip wire and strip their ends, and cut off the yellow and black wires close to the cable tie. Then strip the ends of the red and green wires from the jack. Solder both red and green wires to the circuit board, as shown in Fig. 4. Cut a short length of insulated 14 or 16 AWG wire, strip both ends, and solder one end to the ground pad on the PC board.

Apply four drops of silicone RTV adhesive to the inside of the jack box as shown, align the hole in the circuit board over the hole in the jack box, and bed the board down in the adhesive. Allow sufficient time for the adhesive to set up before proceeding. Determine a suitable length for a 14 to 16 AWG solidcopper ground wire based on the proximity of your telephone apparatus to a suitable location for a ground rod (to be discussed later).

Form a loop in one end of the heavy ground wire to accommodate the central screw in the Modem/Fax Protector. Then insert the screw through the loop in the ground wire, jack box, and circuit board. Tightly wrap the bare copper end of the ground wire on the circuit board several times around the screw to complete the ground connection. Then apply solder to the outside of the turns.

Plug your modem or fax into the jack, and plug the length of cable into your telephone wall outlet. The ring and tip wires of the telephone line must remain consistant throughout. The tip lead must be positive with respect to the ring lead.

After making sure that all connections have been made correctly, apply a thin layer of RTV adhesive to the rim of the jack box, assemble the cover over the screw, and clamp it in position with a washer and two nuts, as shown in Fig. 5.

Good grounding

The necessity for a good

FIG. 5-MODEM/FAX PROTECTOR ASSEMBLY. Note the location of the hole formed for the 4 -wire telephone cable. Only the red and green wires are used; the others are cut off near the cable clamp. The assembly is set on four spots of RTV adhesive, and the cover is held on with the central screw, nuts and washer.

FIG. 6-VARIATION OF THE MODEM/FAX PROTECTOR for use in telephone line connections between PC or terminal and larger distant computer.
ground in protective circuits cannot be overstated; a bad ground is no ground at all! The most effective ground is achieved with a metal rod, preferably copper, at least four feet long, driven into moist soil. Connect the ground rod to the Modem/Fax Protector with the other end of the insulated solid copper ground wire. It can be led to the ground strap through a window opening or a hole drilled through the wall. Suitable grounding rods with wireconnecting clamps are available from electronics supply stores.

The next best grounding

PARTS LIST

Surge voltage protector
SVP1, SVP2-gas surge arrestor, 250 volt, CG-230L (C.P. Claire) or equivalent
Semiconductors
D1-D4-1N5386B Zener diode, 180volt, 5 -watt.
Miscellaneous: PC board, modular plastic phone jack box with jack, phenolic or micarta cover, length of 4 -wire telephone cable, modular phone jack, length of insulated 14 to 16 AWG solid copper wire, copper ground rod (at least 4 feet long), nuts, bolt, washer, silicone RTV adhesive, solder.
method is to connect the 14 to 16 AWG wire to a cold-water pipe. The third, and least satisfactory method (not recommended), is to connect the ground wire to the ground of the 120 -volt AC outlet. (This ground can actually be at a higher potential than true earth ground by many millivolts!)

Variations on a theme

Figure 6 shows the Modem/ Fax Protector concept applied to the protection of remote computer terminals or personal computers connected to a larger computer over long-distance phone lines. The schematic shows a typical four-channel protective circuit.
The SVP's and transient absorbtion Zener diodes in Fig. 6 differ from those in the Modem/ Fax Protector. The SVP's are C.P. Clare C675L's or equivalent, and the Zener diodes are 1N5360B units. Resistors R1 through R4 are 2 -watt wirewound units, and resistors R5 through R8 are 1/2-watt. R-E

INEUUSEM

 CUEPRENTI

> Protect sensitive electronics with an easy-to-build inrush-current limiter that can be embedded in host equipment or be a stand-alone unit.

THE INRUSH-CURRENT LIMITER DEscribed here can protect sensitive line-powered electronics against normal current surges that occur when that circuitry is powered up. The limiter gives a "soft start," to any product or system it protects, and it can be expected to lengthen the operating life and improve the reliability of the host. A thermistor and relay protect against normal "turn-on" overcurrent, and a metal-oxide varistor protects against unwanted overvoltages and overcurrents occuring after startup.

Our inrush-current limiter, shown packaged in an enclosure in Fig. 1, can protect any equipment operated from $120-$ volt, $60-\mathrm{Hz} \mathrm{AC}$. It can also protect non-electronic circuits such as lighting networks and appliances, provided that they do not include motors. (Many appliance motors depend on surge current for starting.) The circuit can be modified for protection at higher or lower AC voltages or DC voltages.

Current limiting

Most power supplies for electronic equipment that are em-

FIG. 1-INRUSH-CURRENT LIMITER circuit as a stand-alone component.

FIG. 2-SIMPLIFIED SCHEMATIC for a linear power supply with a full-wave rectifier and capacitor filter.
bedded within the enclosure (typically sharing a PC board with other circuitry) are conventional linear circuits. As
shown in Fig. 2, they consist of a transformer, bridge rectifier circuit, and one or more filter capacitors. When AC power is applied to such equipment, there is no charge on its capacitors, and the circuit components present an extremely low impedance to the line voltage.
As a result, a large inrush current surge with a fast rise time occurs, and it decays exponentially only as the filter capacitors charge. The peak inrush current is orders of magnitude greater than the circuit's steady state current. It is limited primarily by the short circuit characteristics of the power transformer and rectifier, which are determined by their internal resistance and inductance values and the wiring, as shown in Fig. 3.

An inrush-current limiter, as its name implies, limits inrush current and allows the voltage to rise gradually across the protected circuit. The limiter was designed for high-power stereo amplifiers to avoid the excessive current surges that occur at turn-on. The current drain of large stereo amplifiers is high enough to dim the lights in an
average home when it is turned on.
Electronic-equipment and power-supply manufacturers typically limit inrush current by placing a momentary switching device with a fixed resistance at the power input terminal of the circuitry to be protected. After a predetermined time interval, relay contacts close, shorting out the input resistor so that full voltage is applied to the load.
Our inrush-current limiter circuit takes that conventional approach one step further. The fixed-value protective resistor is replaced by a temperature-variable resistor whose resistance value declines with increasing inrush current. A negative tem-perature-coefficient (NTC) thermistor optimized for inrushcurrent protection, its manufacturer refers to it as an in-rush-current limiter.
A typical temperature vs. resistance curve for an inrush current limiter device is shown in Fig. 4. These devices are widely used in AC/DC switching power supplies. The unit specified for this project has a resistance of 120 ohms $\pm 25 \%$ at 25°.C, a maximum steady state current of 2 amperes, and an approximate resistance of 1.18 ohms at maximum current.

Inrush-current limiting

Refer to the simplified block diagram, Fig. 5. The hot side of the AC line is fed through the inrush-current limiter (shown as a resistor with the letter "T.") Actual resistance change depends on the magnitude and duration of the current drawn. With a nominal resistance of 120 ohms, the maximum instantaneous current through any connected circuit will be limited to 120 volts $/ 120$ ohms $=$ 1.0 ampere. (The current drawn will be less than the theoretical value because of the impedance of other components.)

At the end of a preset elapsed time after power is applied, a relay is actuated and it shorts out thermistor R9; that applies full power to the protected circuitry. The time delay is adjustable and determined by the value of a single resistor or po-

FIG. 3-EFFECTIVE RESISTANCE and inductance of transformer primary and secondary are represented by R1, L1 and R2, L2, respectively; R3 and R4 are the effective resistances of the rectifier bridge and circuit wiring, respectively. The dotted line across filter capacitor C1 represents zero resistance at power turn-on.

FIG. 4-INRUSH-CURRENT LIMITER device shows negative-temperature coefficient (NTC) characteristics. A thermistor optimized for circuit protection, its resistance declines as temperature increases due to current flow.

FIG. 5-BLOCK DIAGRAM OF INRUSHcurrent limiter circuit shows relay power supply and an inrush-current limiter component to protect against current surges at turn-on.
tentiometer; it can range from less that a second to more than a minute.

How the limiter works

The schematic of the inrushcurrent limiter circuit is given in Fig. 6. The 24 -volt DC for the timer circuitry and relay are de-
rived from a regulated power supply made up of resistor R1, capacitors C 1 and C 2 , and diodes D1 to D3. The 120 -volt input voltage is dropped primarily by Cl , and applied to the two series-connected Zener diodes, D1 and D2.

When the polarity of the hot (upper) AC line is positive with respect to the neutral (bottom) AC line, a positive voltage is developed across the Zener diodes. That voltage charges filter capacitor C2 through diode D3. Resistor R1 and parallel metaloxide varistor MOV1 limit the peak current in the circuit. Resistor R2 discharges Cl and resistor R3 discharges the filter and timing capacitors when power is removed, readying the circuit for immediate restart.

The relay power supply in Fig. 6 is popular in isolated electronics products where only small DC currents are needed to power circuitry. It eliminates the bulk and expense of a power transformer. However, appropriate safeguards must be taken because the supply is not isolated from the AC line. The timing circuit consists of resistors R4 to R7, capacitors C3, diode D4, transistors Q1 and Q2, and relay RY1. Timing capacitor C3 charges through timing resistor R4. (With a value of 150 K , the time delay will be 11 seconds.)

The PC board provides three holes for 1 megohm boardmounted potentiometer R9. Its adjustment will give a continuous range of time delays from about 1 second to 60 seconds. As an alternative, Table 1 lists the values of resistor R4 needed to obtain time delays from 1.5 to 180 seconds in discrete increments. The time delays given in the table can vary because of the wide tolerances of electrolytic capacitors.

When the voltage on C3 reaches the 12 -volt breakdown threshold of Zener diode D4, it conducts and applies base drive to turn on NPN Darlington transistor Q1. When Q1 conducts, its collector voltage decreases, turning on PNP Darlington transistor Q2, whose collector current actuates relay RY1. The

FIG. 6-SCHEMATIC OF INRUSH CURRENT LIMITER. Note that Q1 is a an NPN Darlington and Q2 is a PNP Darlington. MOV1 is a metal-oxide varistor and R8 is an NTC thermistor for limiting inrush current.
relay's normally open contacts are connected across the inrush current limiting device. When closed, the contacts apply full power to any connected load. Resistor R7 provides positive feedback to Q1's base, ensuring positive turn-on of the relay.
Diode D5 protects the circuit from the inductive "kickback" of the relay coil when it is deenergized. The resistance of the relay's coil must be at least 1.3 K for effective relay operation. The metal-oxide varistor MOV1 will protect the load against voltage spikes and transients, but it is not a requirement for the operation of this circuit. It has symmetrical bidirectional "breakdown" characteristics similar to those of back-to-back-connected Zener diodes.

Construction

All of the circuitry fits on a PC board measuring 2.5×2.5 inches. However, you might want to make the PC board's outer dimensions larger or smaller. If you plan to mount the circuit in a case, the board size and the hold-down screw spacing will depend on the case selected. The complete circuit assembly can also be mounted within the enclosure of its host equipment with mounting holes and insulating standoffs, if desired.

The PC board for this project

FIG. 7-PARTS-PLACEMENT DIAGRAM for the inrush-current limiter circuit.

FOIL FOR INRUSH-CURRENT LIMITER PC board.
is simple enough for an amateur to make, so its foil pattern is included here. However, because there are no critical components on the board, the
components can be assembled on prepunched insulating board and connected by point-to-point wiring. Before doing any assembly work, drill the four corner holes in the board for the screws to mount the board to the case or inside the host's enclosure with standoffs.

Figure 7 is the parts-placement diagram. Install the resistors, capacitors and diodes first, observing the proper polarities for the capacitors and diodes. If you elect not to use the 1 megohm potentiometer R9, the value of R4 should be 150 K ohms rather than the 10 K shown on Fig. 6, and a jumper should be installed across two of the holes as shown. (Table 1 gives values of R4 for specific time delays.) After all the components are assembled on the board (see Fig. 8), solder them, and trim all excess leads. Recheck your work, carefully examining the circuit for shorts before continuing with the checkout.

Checkout procedure

Warning: This is a line-operated device, so perform all testing and troubleshooting with a line-isolation transformer. Never operate the circuit outside of an insulating housing and never make adjustments or any kind of modifications to it when it is directly connected to the AC line.

An isolation transformer is recommended for testing this circuit. If you cannot obtain a commercial unit, you can build one by connecting the secondaries of two identical transformers back-to-back as shown in

TABLE 1
TIME DELAY VS. RESISTANCE

Resistance (R4) (ohms)	Time delay (seconds)
22 K	1.5
47 K	3.0
68 K	5.0
100 K	7.0
150 K	11.0
220 K	17.0
470 K	40.0
1.0 MEG	80.0
2.2 MEG	180.0

Fig. 9. (It can also be used to test other transformerless electronic circuits.) The 120 -volt line is stepped down, and then stepped back up to 120 volts. Use only transformers with the same secondary voltages, and do not exceed the current or power ratings of each of the transformers.

With no power applied to the circuit, perform the following resistance checks:

- Measure the resistance between the AC inputs, the hot AC line connected to R1, and the neutral AC line connected to the anode of D2. The readings should be greater than 10 megohms-anything less could indicate a problem.

PARTS LIST

All resistors are $y_{/ \text {-watt, }}$ 5\%, unless otherwise stated
R1-100 ohms, 2 watt, 5%, metal-oxide
R2- $2,200,000$ ohms
R3- 22,000 ohms
R4- 10,000 ohms (see text)
R5, R6- 100,000 ohms
R7-220,000 ohms
R8- 120 ohms inrush-current limiter (NTC thermistor) 2-ampere (Keystone) CL-90 or equivalent
R9-1,000,000 ohms potentiometer, 3 pin, PC board-mount, insulated knob.

Capacitors

C1- $1.2 \mu \mathrm{~F}, 250$-volt, polyester-film
C2- $220 \mu \mathrm{~F}, 35$-volt, aluminum electrolytic
C3- $100 \mu \mathrm{~F}$, 16 -volt, aluminum electrolytic

Semiconductors

D1, D2, D4-1N5742, Zener diode, 12 volt, 1 -watt
D3, D5-1N4002, 1 ampere, 100 peak volts
Q1-MPSA14, NPN Darlington transistor, (National Semiconductor) or equivalent
Q2-MPSA64 PNP Darlington transistor, (National Semiconductor) or equivalent
Other components
MOV1-metal-oxide varistor, 130 -volt AC, (Panasonic) 20K201U, or equivalent
RY1-SPST relay, coil: 24-V, contact: 5 A, 250-V AC, $30-$ V DC, coil resistance 1300 ohms, PC-mount, (Omron) G5L-112P-Ps or equivalent
S1-toggle or rocker switch, panelmounted, 350 -volt, 3 amp
Miscellaneous: circuit board, panelmounted receptacle (three-prong), length of 3 -conductor power cord 18 AWG with 3 -prong plug, four $1 / 4$-inch insulated standoffs (see text), insulated case with cover, cable grommet, screws as needed, and solder.

FIG. 8-ASSEMBLED INRUSH-CURRENT LIMITER circuit.

FIG. 9-SCHEMATIC FOR AN ISOLATION transformer to be used in testing the circuit. All turns ratios must be equal.

- Measure the resistance between the same end of R1 and the end of R2 connected to D1. The readings should be 2.2 megohms. Those measurements assure that there are no shorts or low resistances across the AC line.
- Connect the circuit to the isolation transformer and apply power. If the circuit is operating properly, you should hear the faint click of the relay contacts closing after the appropriate time delay.
- Check for proper operation of the power supply by measuring the voltage across filter capacitor C 2 . The reading should be about 22 volts DC when the relay is energized.

When testing and experimenting with loads connected to the inrush-current limiter, allow several minutes for the circuit to cool down to room temperatures and the nominal resistance values to be restored. The allowed time should de-
pend on the magnitude and duration of the current drawn through the device. In normal operation, allow about a minute after power is removed for timing capacitor C3 to discharge before initiating a new time delay sequence.

Installation

The inrush current limiter can be installed within the enclosure of the host equipment. Connect the circuit to the AC line after the host equipment power switch and preferably after the line fuse or circuit breaker. Install the circuit so that the hot leg of the AC line is connected to the surge limiter, as shown in Fig. 6. Cut the AC line to the host and install the circuit in series, as shown in Fig. 8. Be sure the circuit board for the inrush-current limiter and all components are insulated from the equipment's chassis and all other components with insulated standoffs.

As an alternative, install the inrush-current limiter in a suitable insulated case with a line cord, power receptacle, and onoff power switch as shown in Fig. 9. The prototype case measured $43 / 8 \times 3^{1 / 4} \times 1^{1 / 2}$ inches deep.

It might be necessary to cut down the four standoff posts within the case to accommodate continued on page 76

IMAGINE YOU WERE CHALLENGED TO build a device that could send an optical audio signal-with a bandwidth of 300 to 3000 Hertz-as far as possible. To make the contest as fair as possible, the rules would require that only commonly available parts could be used. Also, because optics would play a large role in determining the range of such a device, no optics with a collection area greater than seven square inches could be used.

A dozen years ago, the author lost just such a contest by achieving a communications distance of a little over two and a half miles. The winning entry achieved a distance of 6 miles!

The optical communications system presented here is a somewhat modified version of the author's original Air Hop. The circuits have been redesigned in order to use common parts and provide a decent link at a reasonable cost. The unit has an output power of about 10 milliwatts peak and 5 milliwatts average. It uses frequency modulation on a 50 kilohertz carrier and has a bandwidth of 300-3000 Hertz. Without optics, the Air Hop can communicate about 40 feetwith 3 -inch diameter optics (a magnifying glass), the range is increased to over a mile.

Air Hop can be used as a simple point-to-point audio communications system or to transmit digital data. Since its bandwidth is the same as a phone line, modems can be used to send and receive digital data. It can also be used as a link for a remote control such as that used in a TV receiver, perhaps with a tone encoder/decoder combination. A remote link to a repeater or a long-distance "broken beam" security system can also be made. Whether you need a link from a house to a barn or a short jump across the commotion of Wall Street. Air Hop can do it.

Electro optics

Before we get into the design and construction of the Air Hop, let's explain some optical terms. PIN Diode. A photosensitive di-

Bulld the Aif Hop, an inexpensive system that communicates with light.

RODNEY A. KREUTER

\%
ode with a response time of a few nanoseconds. It can be used in a photoconductive mode where the current through it is a function of light, or in a photovoltaic mode where the voltage across it is a function of light (see Fig. 1).
Phototransistor. A transistor whose base current is a function of light. The collector current is the base current times the gain of the device. Response time is a few microseconds.
Photodarlington. Two transistors in the same package connected in a Darlington configuration. The first transistor is a phototransistor and the second is an ordinary transistor. Response time is tens to hundreds of microseconds.
Detector area. The area (in square inches or millimeters) of the light-gathering detector. Most PIN diodes have a plastic case that acts as a simple lens and provides a collection area of 0.01 to 0.025 square inches. This area is important when you're calculating lens gain.
Inverse square law. This is the "killer" in nearly all communications systems. Very simply stated, it means that if you increase the distance between the transmitter and the receiver, the signal strength will drop in proportion to the square of the distance. For example, if you receive 9 microwatts of power when the distance between the transmitter and receiver is ten feet, you will receive only 1 mi crowatt of power if you increase the distance to thirty feet.
Transimpedance amplifier. An amplifier with a very low input impedance. Sometimes called current-to-voltage converters, these special amplifiers are often used in optical systems because their low impedance load will ensure maximum current from a photodiode. They can provide a bandwidth up to a few hundred megahertz.
Lens gain. The ratio of the lens area to the detector area. Since the area of a lens is larger than the area of the detector, more light is gathered by the lens. Lens losses and focusing errors (which together should be about 15%) must be included in

FIG. 1-A PHOTOSENSITIVE PIN diode has a response time of just a few nanoseconds.

FIG. 2-THE LIGHT FROM AN LED diverges or spreads out as it leaves the LED. A lens will then collimate the light so that it travels in parallel beams.

FIG. 3-THE f NUMBER or lens speed is the ratio of the focal length to the diameter. You can think of this as an optical acceptance angle.
a rigorous calculation of lens gain.
Infrared. The region of the light spectrum next to the color red (about 800 nanometers). Most infrared LED's emit at either 880 nanometers or 940 nanometers. Most silicon detectors have their maximum response at about 900 nanometers. Infrared is used because most red (visible light) LED's have trouble producing a half a milliwatt of power, while many IR LED's have an output of 10 milliwatts or more.
Collimate. To direct in a straight line. When light from a source travels in parallel beams
instead of a divergent cone, it is said to be collimated. Although you can't form a truly collimated beam, the lens on the transmitter attempts to do that (see Fig. 2).

Divergence. The "spreading out" of an optical beam. In other words, a divergent beam is the opposite of a collimated beam. All optical beams diverge, some more than others. If you could form a beam with zero divergence (you can't), it would not obey the inverse square law. In other words, you could send your beam an infinite distance because the energy wouldn't spread out. Laser beams have small divergence compared with other light sources. Spot lights are built to have a small amount of divergence, whereas flood lights are built to have a great deal of divergence (see Fig. 2).

Responsivity. A measure of the relationship between the optical and the electrical signal of a detector. A rule of thumb for PIN diodes is 0.4 to 0.6 amps per watt. This means that if 1 milliwatt of light strikes a PIN diode, a current of 0.4 to 0.6 milliamps will flow through the diode. To put that in perspective, Air Hop will work at levels of about 100 picoamps of current or about 200 picowatts of optical power.
AC and DC light. If you pulse an LED on and off it becomes an AC -light source. If you simply apply DC though it, it becomes a DC-light source. This concept is important because most light sources contain some AC and some DC light. Normal tung-sten-filament light bulbs contain a lot of DC and some AC light (because of the thermal time constant of a hot filament). The sun contains a lot of DC and a lot of AC. Fluorescent lights contain some DC and a lot of AC. The only reason that this is important is that if you build a DC-coupled optical receiver and operate it outdoors where there is a lot of sunlight, the receiver can easily "saturate" and your AC signal will not be amplified correctly. Some kind of "light shield," such as those that are used on some
camera lenses, will help. That's why the Air Hop uses an ACcoupled detector.
f number or lens speed. In lenses, the ratio of the focal length to the diameter is called the " f " number ($\mathrm{f}=\mathrm{fl} / \mathrm{d}$). The smaller the number, the "faster" and more expensive the lens. It is convenient to think of this as an optical "acceptance" angle (see Fig. 3). This will be important in choosing the transmitter's collimating lens. In cameras, where the focal length is fixed, a lens with a larger diameter than another lens has a smaller " f " number, and is said to be faster. That's because the larger lens gathers more light and the shutter can be set to a faster speed than the smaller lens. Table 1 shows f numbers vs. acceptance angles.
Thermal noise. Although thermal noise is not applicable to optical devices such as lenses, the electronic performance of your optical system will be limited by thermal noise. Thermal noise is caused in an electrical device by the random movement of molecules. The thermal current noise (i_{N}) of a resistor is given by:
$\left(\mathrm{i}_{\mathrm{N}}\right)^{2}=4 \mathrm{KTB} / \mathrm{R}$
where
$\mathrm{K}=$ Boltzmann's constant (1.38 $\times 10^{-23}$)
$\mathrm{T}=$ temperature in Kelvin (300)
$\mathrm{B}=$ bandwidth in Hertz
$\mathrm{R}=$ resistance in ohms
A 300 K resistor operated at near room temperature in a receiver with a bandwidth of 20 kilohertz will have a thermal noise current of 33 picoamps

Although 33 picoamps might not sound like a lot of current, the noise it will cause at the output of the transimpedance amplifier will be about 10 microvolts (RMS). Converting to peak-to-peak noise gives about 60 mi crovolts peak-to-peak.

In the Air Hop, the only amplifier between the transimpedance amplifier and the comparator is a differential amplifier with a gain of about 50. That amplifies the 60 microvolts of noise and produces about 3 millivolts of noise at the output of the optical amplifier. Actual measurements showed 5

TABLE 1 f NUMBER VERSUS ACCEPTANCE ANGLE
f

\mathbf{f}	Angle (in degrees)
0.5	90
0.75	67.4
1.0	53.2
1.5	36.8
2.0	28
2.5	22.6
3.0	19
3.5	16.2
4.0	14.2

FM TRANSMITTER PARTS LIST

All resistors are $1 / 4$-watt, 5%.
R1, R5, R9, R15, R16-1000 ohms
R2-22,000 ohms
R3- 10,000 ohms
R4-1000 ohms, potentiometer
R6-100 ohms
R7- 5600 ohms
R8, R13-2200 ohms
R10- 470 ohms
R11- 50,000 ohms, potentiometer
R12- 33,000 ohms
R14- 15,000 ohms
R17, R18-22 ohms (see text)
Capacitors
C1-C3, C6-1 $\mu \mathrm{F}, 16$ volts, electrolytic C4- $100 \mu \mathrm{~F}, 16$ volts, electrolytic
C5, C9- $10 \mu \mathrm{~F}$, 16 volts, electrolytic
C7- $0.001 \mu \mathrm{~F}$, ceramic
$\mathrm{C} 8, \mathrm{C10}, \mathrm{Cl1}-0.01 \mu \mathrm{~F}$, ceramic
Semiconductors
IC1-NE555 timer
Q1-Q4-2N3904 NPN transistor
LED1-LED4-IR LED (Optek OP293A 880nm, Optek OP295A 880nm narrow beam, Lytron 940 nm , see text)
Other components
MIC1-electret microphone
Miscellaneous: 4 "AA" batteries and holder, PC board, PVC pipe and plastic disks, hardware, wire, solder, etc.
millivolts of noise. That is reasonable because there are other noise-producing devices in the system such as the current noise of the first transistor. Although every transistor produces some noise, the first one produces more because of its higher signal amplification.

One reason it's important to present equations like this is that they give us insight into system improvement. If there were no noise, virtually unlimited distances could be achieved. However, when the strength of the signal is less than the noise, we're out of luck. We can control temperature to some extent, and the
equation shows that at a lower temperature, the noise is lower. But lowering the temperature of the transimpedance resistor even by 100 degrees Kelvin will decrease the noise power only by a factor of about 1.2.

If a system requires only a small amount of bandwidth, say a few hertz, as in a television remote control, we could decrease the bandwidth from 20 kilohertz to 20 Hertz and decrease the noise by a factor of about 30 . Even with the inverse square law working against us, that would improve the range by a factor of about 5 . Such a bandwidth reduction would require a good tunable filter, but it certainly can be done. Of course, audio signals sent over a link with a 20 -Hertz bandwidth wouldn't be recognizable as audio. It would, however, permit Morse-code communication.
Photodetector. Any device that can convert light into an electrical signal. Phototransistors, photo SCR's, phototriacs photocells, solar cells, and photodiodes are all examples. Even photoresistors and thermocouples can be loosely considered as forms of photodetectors.

Phototransistors and photodarlington detectors are often used to detect light. Both work well if you don't require high speed. Typical phototransistor rise and falls times are 1 to 5 microseconds; for Darlingtons they are hundreds of microseconds. In electronics that is equivalent to measuring bandwidth with a stop watch and a calendar, respectively.

The author prefers to use PIN diodes in the photoconductive mode as detectors. Rather than being limited by the gain and bandwidth of a phototransistor, PIN's give us the choice of both by allowing us to design our own amplifiers. PIN diodes are also very "quiet." Their noise is almost unmeasureable.
LED's. A light-emitting diode is a semiconductor device that emits light when forward biased. You would think that choosing an LED for a system such as this would be a simple matter, but it's not. Characteristics such as power output,
wavelength, speed, and beam angle all come into play.
The first consideration is usually the power output. However, if you can't get the power into your lens, it's simply wasted, and if it's at the wrong wavelength, your detector won't see it.

Wavelength is important. The most widely used wavelengths for infrared devices are 880 nanometers and 940 nanometers. The first choice is to find a detector and emitter that match. We used 940 nanometers, which is further into the infrared than 880. Many detectors made for 940 nanometers have a built-in visi-ble-light filter. Filters are not often put on the 880-nanometer devices because that wavelength is near the visible spectrum and such a narrow filter would be difficult to produce in large quantities.

If you wish to produce a hundred thousand Air Hop systems with optics, you would want to buy emitters with wide but uniform beams. Then you would have a custom lens designed and produced at a small cost in plastic material. That would produce the most uniform beam and would be reproducible in large quantities. In applications such as remote control, you might want to use an emitter or many emitters to "flood" an area. In that case, you would want an emitter with a wide beam.

If, on the other hand, you're just trying to see how far you can "air hop" a signal, you will want something totally different. Narrow beam angles are necessary for efficient coupling to an off-the-shelf lens. As a
matter of fact, choosing the smallest beam angle available will save money when it comes to buying a lens. The smallest easily obtainable beam angle for an LED is about 20 degrees. When a manufacturer specifies that angle, he really means a "half angle" of 20 degrees, or a solid cone of 40 degrees.
The angle also specifies the half-power point. For example, if a manufacturer specifies 5 milliwatts and a beam angle of 20 degrees, that means that if you can capture all of the power contained in a 40-degree cone, you will get 2.5 milliwatts of optical power. In any case, purchase an LED with a small beam angle, as much power as possible, and a reasonable speed.
Lenses. Lenses are to the optical world what antennas are the world of RF. The importance of even simple lenses cannot be over emphasized. If any highfrequency RF engineer could build an antenna with 60 dB of gain for less than ten dollars, we would see a lot of happy RF engineers! Since the optical world deals with very small wavelengths, 60 dB (a gain of 1000) is certainly possible.
Although at first it might be hard to believe, the size of the lens on the receiver is very important, but on the transmitter it isn't. That's because at the receiver you are trying to intercept as much light as possible, so the larger the lens, the better. The

OPTICAL AMPLIFIER PARTS LIST

All resistors are $1 / 4$-watt, 5%.
R1- 100,000 ohms
R2- 10,000 ohms
R3, R9, R10, R16, R23- 5,000 ohms
R4, R5 - 150,000 ohms
R6, R17, R24-3300 ohms
R7, R12- 100 ohms
R8- 3900 ohms
R13, R14- 5600 ohms
R11, R15, R18, R21- 4700 ohms
R19, R22-22 ohms (see text)
R20-360 ohms
Capacitors
C1, C4, C8- $10 \mu \mathrm{~F}, 16$ volts, electrolytic
C2, C5, C9- $0.1 \mu \mathrm{~F}$, ceramic
C3, C12, C14-C16-0.01 $\mu \mathrm{F}$, ceramic
C6, C7, C11- 470 pF, ceramic, 10%
C10- $0.001 \mu \mathrm{~F}$, ceramic, 10%
C13-100 $\mu \mathrm{F}, 16$ volts, electrolytic

Semiconductors

Q1-MPS918 NPN transistor (Motorola)
Q2-Q6-2N3904 NPN transistor (Q5 and Q6 must be a matched pair, see text)
D1-PIN diode (Siemens SFH205 940 nm usable at 880 nm , Panasonic PN323BPA 940 nm , Panasonic PN334PA 880 or 940 nm , see text)
Other components
SPKR1-8- to 45 -ohm speaker
Miscellaneous: PC board, wire, solder, etc.
purpose of the lens at the transmitter is to collimate the beam, so any lens with the right " f " number will work.

The "speed" of a lens, also called the " f " number, should be familiar to anyone with photography as a hobby. It's a measure of the angle of acceptance of a lens. On the transmitting end, any light from the LED that

TABLE 2-LENS GAIN

Lens Diameter/Area (inch/sq. inch) 2/3.14 Power Gain Distance Improvement $\begin{array}{ll}3 / 7.07 & 707\end{array}$ (at 0.01 sq. inch) (85% lens efficiency) 314 $\times 16$ $\times 24$ $4 / 12.6 \quad 1260$ $\times 33$ $6 / 28.3 \quad 2830 \quad \times 49$

FIG. 4-THE AIR HOP IS BUILT FROM THREE MODULES: an FM transmitter, an optical amplifier, and an FM demodulator.

FIG. 5-FM TRANSMITTER MODULE. It provides a microphone amplifier and FM modulator.

FM DEMODULATOR PARTS LIST

All resistors are $1 / 4$-watt, 5%.
R1- 100 ohms
R2, R3, R6, R11-R13, R16- 10,000 ohms
R4, R5- 100,000 ohms
R7-33,000 ohms
R8- 50,000 ohms, potentiometer
R9, R14, R15-68,000 ohms
R17-4700 ohms
R18-10,000 ohms, potentiometer
R19- 22,000 ohms
R20-470,000 ohms
R21- 10 ohms
Capacitors
C1, C6, C10, C16-1 $\mu \mathrm{F}$, 16 volts, electrolytic
C2, C5, C9, C12- $0.1 \mu \mathrm{~F}$, ceramic
C3- $100 \mu \mathrm{~F}, 16$ volts, electrolytic
C4, C7-0.001 μ F, ceramic, 10%
C8-470 pF, ceramic, 10\%
C11- $0.01 \mu \mathrm{~F}$, ceramic
C13-100 pF, ceramic
C14- $4.7 \mu \mathrm{~F}, 16$ volts, electrolytic
C15- $470 \mu \mathrm{~F}, 16$ volts, electrolytic
Semiconductors
IC1-LM311 or LT1011 comparator
IC2-CD4046 phase locked loop
IC3-MC34119 audio amplifier (Motoroia)
Q1-2N3904 NPN transistor
Miscellaneous: 9 -volt battery and clip,

PC board, blank PC-board material and solder-wick straps for shield (see text), PVC pipe, plastic disks, hardware, wire, solder, etc.
Note: The following items are available from Q-Sat, P.O. Box 110, Boalsburg, PA 16827:

- Complete Air Hop kit including all three PC boards (does not include speaker, 10 K volume control, lenses, PVC pipe and batteries), AIRHOP-KIT- $\$ 30.00$
- Transmitter kit including one IR LED and PC board, AHTX-KIT\$11.00
- Transmitter PC board only, AHTX-PCB- $\$ 5.00$
- Optical amplifier kit including PIN diode and PC board, AHOPTAMP. KIT- $\$ 12.00$
- Optical amplifier PC board only, AHOPTAMP-PCB- $\$ 6.00$
- FM demodulator kit including PC board (no speaker or 10 K volume control), AHFMDEMOD-KIT-\$12.00 - FM demodulator PC board only, AHFMDEMOD-PCB- 56.00
Add $\$ 3.00$ shipping and handling to all orders. Pennsylvania residents must add 6\% sales tax. Please allow 3 to 4 weeks for delivery.
doesn't stay within that cone is lost. A 50 -milliwatt LED will be of no value if the light "sprays" out at 90 degrees-any light that can't be coupled into the lens is lost.

The gain of a lens is basically the ratio of the area of the lens to the area of the detector. For example, the area of most PIN diodes is about 0.01 square inch. The area of a 2 -inch diameter
lens is 3.14 square inches. Therefore, the gain of a 2 -inch lens is about 3.14/0.01 or 314. Remember that this amplifier (the lens) consumes no power, has (for our purposes) infinite bandwidth, and adds no noise to the signal. A device of this kind in the electrical world would be nothing short of a miracle.

Table 2 shows the gain for
some different size lenses. The calculations assume that no light is absorbed or reflected by the lens, and the detector is at the exact focal point of the lens. Those asumptions are certainly not true. Even fine-quality camera lenses, which are coated with anti-reflective coatings, do not pass 100 percent of the light. There's plenty of room here for experimentation. Some crude experiments showed about 85% of the theoretical gain.

FM transmitter

The Air Hop is built from three modules. The first module is the FM transmitter. Two other modules (the optical amplifier and FM demodulator) comprise the receiver. A block diagram of the system is shown in Fig. 4.

The FM transmitter module, shown in Fig. 5, provides a microphone amplifier (Q 1 and Q 2) and an FM modulator built from a 555 timer (IC1). There are two adjustments, one for the FM center frequency (R11) and one for the amount of deviation (R4). Resistor R1 is for microphones that require an external power source, such as an electret type. For an external audio source, the input must be limited to a few millivolts.

The output of IC1 (pin 3) is adjusted via R11 so that the frequency is 50 kHz (20 microseconds). The output of the 555 can be frequency modulated by applying the upper trip-point

FIG. 6-THE OPTICAL AMPLIFIER MODULE converts the optical signal into an electrical signal, limits its bandwidth, and provides a differential drive to the comparator.

FIG. 7-YOU CAN MATCH transistors Q5 and Q6 using this circuit. Any transistor having less than about a volt between the collector and emitter has too much gain. Choose two transistors that have the closest match between collector-toemitter voltages.
voltage reference to pin 5. Although you cannot sweep the frequency very far, deviations of 10 percent or so can be obtained easily. The FM deviation is a function of the amplitude of the signal applied to pin 5 . If a DC voltage is applied to pin 5 and switched on and off, FSK (digital) data will result. Although the output of the 555 could drive a modest LED, transistor drivers are provided to drive multiple LED's.

Current-limiting resistors R17 and R18 are adjusted to limit the current for your particular LED. Currents of up to 200 milliamps pose no problem for the LED's, but they will drain your batteries quickly. If you're using one LED, values of about 47 ohms will yield about 45 mil-
liamps, average. Systems using two LED's in series will require about 22 ohms for the same current.

The prototype system uses four AA alkaline type batteries for the transmitter power supply. Although they give reasonable life, you may want to use something a little larger, perhaps four D cells.

Optical amplifier

The purpose of the optical amplifier module, shown in Fig. 6 , is to convert the optical signal into an electrical signal, limit its bandwidth (to reduce noise), and to provide a differential drive to the comparator.

The PIN diode detector (D1) is AC coupled to a simple transimpedance amplifier consisting of Q1 and Q2. Even though the signal is AC coupled, the bias for the PIN diode must be DC coupled. That is done through resistors R1 and R2. If Air Hop is used in a high ambient light situation, resistor R1 might have to be reduced in value to prevent DC saturation of the PIN diode. If the DC voltage across R1 is greater than about 3 volts in operation, you should lower the value of R1.

The transimpedance resistors (R4 and R5) set the overall gain of the amplifier. Two resistors in series were used instead of just one because every resistor has some capaci-
tance across it. Using two resistors decreases the capacitance by a factor of two. All you have to do is join the two resistors above the PC board.

The output of the transimpedance amplifier is simply its input current times the transimpedance resistance. That's why it's sometimes called a current-to-voltage converter. As you increase the resistance, the signal increases, but the bandwidth decreases. Since the signal increases directly with the value of the resistance and the noise increases with the square root of the resistance, it makes sense to have the resistance as large as possible-it would, if you still had enough bandwidth. That's why Q1 is a VHF transistor.

Since the center frequency of the signal is at 50 kilohertz, it's desirable to limit the bandwidth of the optical amplifier to reduce the total noise. Transistor Q 3 and the surrounding components form a two-pole high-pass filter at about 40 kilohertz. That eliminates such lowfrequency noise as the 60-hertz optical noise given off by room lights.

Transistor Q4 and its associated circuitry form a 60-kilohertz low-pass filter. That eliminates high-frequency electrical noise such as that from AM radio stations.
When the low-pass and highpass filters are cascaded, they form a bandpass filter centered

FIG. 8-FM DEMODULATOR. An LM311 comparator converts the small analog signal to a digital level for the CD4046 phase-locked loop, which is configured as a first-order FM demodulator.
on 50 kilohertz, with a pass band of about 20 kilohertz. You could reduce the noise by making the filter narrower, or by putting a narrower filter between the output of the optical amplifier and the input of the demodulation board. The disadvantage of doing that is that you would have to make the narrow filter tunable, and use a scope to adjust it.
Transistors 85 and 96 form a differential amplifier that is the only real gain stage in the optical amplifier besides Q1. The purpose of using a differential amplifier is so that a differential signal will be available to drive the voltage comparator. It's nice to drive a comparator differentially because you get twice the signal but not twice the noise. There is one problem with a differential amplifier: if you want a reasonable amount of gain, the transistors must be well matched. That prevents one transistor from "current hogging" and saturating.
The matching of transistors can be done a number of different ways-a curve tracer is best but most people don't have access to one. Next best is a meter that actually measures gain at a given base or collector current. As a last resort, the circuit in Fig. 7 can be used. Some
kind of socket, such as an IC socket with only three pins can be used to hold the transistor. Simply measure the voltage from the collector to emitter, and choose two transistors that have the closest match between the collector-to-emitter voltage. Any transistor having less than about a volt has too much gain.

It's also a good idea to use bias resistors that have nearly the same values. Try to match the values of R16 and R23 and R17 and R24 as close as possible. If the final amplifier isn't matched within a volt, you might want to adjust the values of R19 and R22. Those resistors were purposely put there to allow some "balancing" of the differential amplifier. Values from 10 to 33 ohms should be fine. (Potentiometers were not used because they are expensive.)

FM demodulator

The schematic for the FM demodulator is shown in Fig. 8. An LM311 comparator (IC1) converts the rather small analog signal to a digital level for the CD4046 phase-locked loop (IC2). Remember that the amplitude of the recovered audio has nothing to do with the amplitude of the received signal. The amplitude of the recovered audio depends only on the
amount of frequency deviation set by the transmitter and the amplitude of your voice.

The phase-locked loop (IC2) is configured as a first-order FM demodulator. With no input signal, the center frequency of the loop (pin 3 of IC2, which is also TP3) is adjusted by R8 for a frequency of 50 kilohertz. Because the variation from one CD4046 to another can be quite large. you might have to adjust R7 and, perhaps, R9 as well.

The demodulated output from IC2 is low-pass filtered at 3 kilohertz by $\mathrm{Q1}$ and its associated circuitry, and then sent to audio power amplifier IC3, a Motorola MC34119. A wider bandwidth can be obtained by making the filter higher in frequency. Since the "carrier" frequency is only 50 kilohertz, don't try extending the audio bandwidth to more than 6 or 7 kilohertz. Pin 1 of the MC34119 can be used for squelch or in conjunction with a push-to-talk switch to silence the receiver while transmitting. If you don't need the squelch, simply jumper pin 1 of IC3 to ground.

Although you can use a standard alkaline 9 -volt battery to power the receiver, the current draw can be quite high on voice peaks. Six AA cells would be a much better choice.

We'll finish up the project next month with complete construction details.

R-E

Use the 555 to generate sawtooth

 waves, detect missing pulses, convert DC to AC, boost DC voltage and more.RAY M. MARSTON

THE POPULAR 555 TIMER IC HAS been the star of three previous Electronics Now articles (September 1992, page 58, October 1992, page 69 and November 1992, page 61.) Just when you thought that all possible applications for that versatile 555 had been exhausted-surprise! This article takes the 555 into new territory-a sawtooth generator, a "ramp" generator, a time-base generator, a frequency meter, and even a tachometer for your car.

But that's not all-there is a missing-pulse detector, and DC voltage doubler, tripler and quadrupler. There are also negative and high-voltage generators and a DC to AC inverter!

If you've been following the previous articles and (we hope) building some or all of the circuits presented in them, you'll be all set for the circuits presented here. Who said the microprocessor was the most versatile IC, anyway?

The last three articles on the 555 explained its basic operating principles. You would have learned (or refreshed your memory) about how to place external components so the timer functions either as a monostable or astable multivibrator. You might want to reread the introductory sections of those articles to brush up on the unusual features of the 555. A complete schematic of the circuitry contained in the 555 is given as Fig. 2 on page 64 of the September 1992 issue.

Figure 1 is another functional block diagram and pinout of the bipolar 555 with a different ar-

FIG. 3-LINEAR SAWTOOTH OR RAMP waveform generator based on the 555, a, and "ramp" waveform, b.

FIG. 4-OSCILLOSCOPE TIME-BASE GENERATOR circuit based on the 555, a, and ramp and ramp brightness pulse waveforms for an oscilloscope's X and Z axes.
monostable multivibrator that is triggered by an external square wave trigger pin 2 obtained through capacitor C2 from the collector of transistor Q1. Note that output pin 3 of the 555 , used in most of the 555based circuits presented earlier is unused here.

The voltage across C4 (the timing component) is normally zero, but whenever the circuit is triggered, C4 charges exponentially through resistor R5 and PERIOD potentiometer R6 to twothirds of the supply voltage. At that time, the monostable period ends and the voltage across C4 drops abruptly to zero. The output sawtooth waveform (Fig. 2-b) is taken across capacitor C4 through buffer transistors Q2 and Q3 and level potentiometer R7.

The period of the sawtooth or width can be varied from $9 \mathrm{mi}-$ croseconds to 1.2 seconds with the capacitance values for C4 listed in Table 1. The circuit's maximum usable repetition frequency is approximately 100 kHz .

The generator must be triggered by rectangular input waveforms with short rise and fall times. Potentiometer R6 controls the sawtooth period over a decade, and potentiometer R7 controls the amplitude of the output waveform.

Figure 3-a shows a triggered linear sawtooth or ramp waveform generator. Capacitor C4 is charged by a constant-current generator that includes Q1. The output waveform (Fig. 3-b) is taken at the wiper of level potentiometer R6, which is coupled to the voltage across C4 through Q2. Note that the curved ramps of Fig. 2-b have been flattened.

When a capacitor is charged from a constant current source. its voltage rises at a predictable linear rate that can be expressed as:
Volts/second $=$ amperes/farad By introducing more practical values, alternative expressions for the rate of voltage rise are:
$\mathrm{V} / \mu \mathrm{s}=\mathrm{A} / \mu \mathrm{F}$, or
$\mathrm{V} / \mathrm{ms}=\mathrm{mA} / \mu \mathrm{F}$
Those formulas state that voltage rate-of-rise can be in-

FIG. 5-TRIGGER SELECTION CIRCUIT for the Fig. 4 circuit

FIG. 6-A 1-kHz LINEAR-SCALE ANALOG FREQUENCY meter circuit based on the 555.

FIG. 7-VEHICULAR TACHOMETER CIRCUIT based on the 555.

FIG. 8-ALTERNATIVE ANALOG TACHOMETER CIRCUIT to Fig. 6.
creased either by increasing the charging current or by decreas-
ing the capacitance value.
The charging current in the Fig. 3-a circuit can be varied over the range of about 90 mi croamperes to 1 milliampere with period potentiometer R5, thus giving the 0.01 microfarad timing capacitor rates-of-rise of 9 volts per millisecond to 100 volts per millisecond.

Each one-shot or monostable cycle of the 555 ends when the voltage across C 4 reaches twothirds of the supply voltage. As shown in Fig. 3-a, the supply is 9 volts, so two-thirds of 9 volts is 6 volts, the amplitude of the ramp waveforms in Fig. 3-b.

The sawtooth cycles of the circuit have periods variable from 666 microseconds ($2 / 3$ millisecond) to 60 microseconds (6/100 millisecond).

Periods can be increased beyond those values by increasing the value of C 4 , or reduced by reducing the value of C 4 . In this circuit, stable timing periods depend on a stable voltage source.

Fig. 4-a shows how the circuit in Fig. 3-a can be modified to become an oscilloscope timebase generator. It can be triggered by external square waves through a suitable trigger selector circuit. The ramp output waveform (top of Fig. 4-b is fed to the X plates of an oscilloscope with a suitable amplifier stage. The pulsed outpur from pin 3 of the 555 (shown in the lower half of Fig. 4-b) is fed to the CRT's Z axis to trace the ramps with higher brightness.

The shortest useful ramp period that can be obtained from the circuit in Fig. 4-a (with a 0.001 microfarad capacitor C3) is about 5 microseconds. That value, when expanded to give full deflection on an oscilloscope with a ten-division graticule, yields a maximum timebase rate of 0.5 microsecond per division.

The timebase circuit of Fig. 4a can synchronize signals at trigger frequencies up to about 150 KHz . At higher frequencies, the input signals must be divided by a single- or multi-decade frequency divider. With that approach, the timebase can be used to view input signals at megahertz frequencies.

Figure 5 illustrates a simple but versatile trigger selector circuit for the timebase generator in Fig. 4-a. Operational amplifier ICl (a μ A741) has a reference voltage fed to its noninverting input pin 3 by trigger level potentiometer R4. The signal voltage is then fed to ICl's inverting pin 2 through switch S1, resistor R1 and sensitivy potentiometer R3.

Switch S1 selects either inphase or out-of-phase input signals from the Y -driving amplifier of the oscilloscope, permit-
ting the selection of either the plus or minus trigger modes. The output of the circuit in Fig. 5 is coupled directly to the C1 input of Fig. 4.

Analog frequency meters

Figure 6 shows the 555 IC organized as a linear-scale analog frequency meter with a fullscale sensitivity of 1 kHz . The circuit's power is obtained from a regulated 6-volt supply, and its input signals can be pulses or square-wave signals with peak-to-peak amplitudes of 2 volts or greater. Transistor Q 1 amplifies this input signal enough to trigger the 555 . The output from pin 3 is fed to the 1 -milliampere full-scale deflection moving-coil meter M1 through offset-canceling diode D1 and multiplier resistor R5.

Each time the monostable multivibrator is triggered, it generates a pulse with a fixed duration and amplitude. If each generated pulse has a peak amplitude of 6 volts and a period of 1 millisecond, and the multivibrator is triggered at an input frequency of 500 Hz , the pulse will be high (at 6 volts) for 500 milliseconds in each 1000 milliseconds. Moreover, the mean value of output voltage measured over this period is 500 milliseconds $/ 1000$ milliseconds $\times 6$ volts $=3$ volts or half of 6 volts.

Similarly, if the input frequency is 250 Hz , the pulse is high for 250 milliseconds in each 1000 -millisecond period. Therefore, the mean output voltage equals 250 milliseconds/ 1000 milliseconds $\times 6$ volts $=1.5$ volts or one quarter of 6 volts. Thus, the circuit's mean value of output voltage, measured over a reasonable total number of pulses, is directly proportional to the repetition frequency of the monostable multivibrator.

Moving-coil meters give mean readings. In the circuit of Fig. 6 a 1 -milliampere meter is connected in series with multiplier resistor R5, which sets meter's sensitivity at about 3.4 volts full-scale deflection. The meter is connected to give the mean output value of the multi-

FIG. 9-MISSING-PULSE DETECTOR with LED or relay output.

FIG. $10-$ DC VOLTAGE-DOUBLER based on the 555.

FIG. 11-DC VOLTAGE-TRIPLER based on the 555.

FIG. 12-DC VOLTAGE-QUADRUPLER based on the 555.
vibrator, and its reading is directly proportional to the input frequency.
With the component values shown, the circuit is organized to read full-scale deflection at 1 kHz . To set up the circuit initially, a $1-\mathrm{kHz}$ square-wave signal is fed to its input, and full-scale-adjust potentiometer R7 (it controls pulse length) is set to give a full-scale reading on the meter.
The full-scale frequency of the circuit in Fig. 6 can be varied from about 100 Hz to 100 kHz by selecting the value of C3. The circuit can read frequencies up to tens of megahertz by introducing the input signals to the monostable multivibrator through either a single or multidecade digital divider. The dividers can reduce the input frequencies to values that can be read on the meter.
Figure 7 shows how the circuit in Fig. 6 can be modified to become an analog.tachometer or revolutions per minute (rpm) meter for motor vehicles. The circuit is powered by a regulated 8.2 volts derived from the vehicle's 12 -volt battery with resistor R1, Zener diode D1, capacitor Cl , and the ignition switch. The 555 is triggered by a signal from the vehicle's breaker points conditioned by the network of resistor R2, capacitor C2, and Zener diode D2.
The 50-microampere movingcoil meter M1, the rpm indicator, is activated from output pin 3 of the 555 through diode D3. Current is applied to the meter through series-connected resistor R5 and calibrate potentiometer R6 from the power supply when the 555's output is high. But current is dropped nearly to zero by diode D1 when the 555 s output is low.

Both the circuits of Figures 6 and 7 are powered from regulated sources to ensure a constant pulse amplitude and provide accurate, repeatable readings from the meter. The meter is actually a current-indicating device, but it is connected as a voltage-reading meter with suitable multiplying resistors. They are R6 and R7 in Fig. 6 and R5 and R6 in Fig. 7.

FIG. 13-DC NEGATIVE-VOLTAGE GENERATOR based on the 555.

FIG. 14-NEON-LAMP DRIVER based on the 555, a, and DC-to-DC converter with rectifier and filter replacing lamp, b.

FIG. 15-DC-to-AC INVERTER based on the 555.

The diagram of Fig. 8 shows the outline schematic for an alternative analog frequency meter that requires neither a multiplier resistor nor a regulated power supply. In this circuit, output pin 3 of the 555 is connected to the meter through JFET transistor Q1. Configued as a constant-current generator through potentiometer R3, it sends a fixed-amplitude pulse to the meter regardless of variations in the supply voltage.

Missing-pulse detector

Figure 9 illustrates how the

555 can become the key component in a missing-pulse detector that closes a relay or illuminates a LED if a normally expected event fails to occur. The 555 is connected as a monostable multivibrator except that Q1 is placed across timing capacitor Cl , and its base is connected to trigger pin 2 of the IC through R1.

A series of short pulse- or switch-derived clock input signals from the monitored event is sent to pin 2. The values of R3 and C 1 were selected so that the natural monostable period of

FIG. 16-FUNCTIONAL BLOCK DIAGRAM and pinout of the CMOS 7555 .
the IC is slightly longer than the repetition period of the clock input signals.

Thus, each time a short clock pulse arrives, Cl is rapidly discharged through Q1, and simultaneously a one-shot timing period is initiated through TRIGGER pin 2 of the IC, forcing outpur pin 3 high. Before each monostable period can terminate naturally, however, a new clock pulse arrives and starts a new timing period. Therefore outpur pin 3 remains high as long as clock-input pulses continue to arrive within the preset time limits.
If a clock pulse is missing or its period exceeds the pre-set limits, the monostable period will end on its own. If that happens, pin 3 of the IC will go low and drive either the relay or LED "on." As a result, the circuit becomes a missing-pulse detector. It will produce a pulse output when an input pulse fails to occur within the timer delay.
Missing-pulse detectors like this can automatically warn of gaps or one or more missing pulses in a stream of pulses at the input. They are used in communications systems, continuity testers, and security systems. With the component values shown, the timer has a natural period of about 30 sec onds. This period can be changed by changing R3 or Cl to satisfy specific needs.

Voltage converters.

The 555 IC can be instrumental in converting a DC voltage to a higher DC voltage, reversing the polarity of a DC voltage or converting it to an AC voltage. Figures 10 to 15 show variations of those circuits.

Figure 10, for example, shows how the 555 functions in a DC voltage doubler. The 555 is organized as a free-running astable multivibrator or square-wave generator that oscillates at about 3 kHz . (The oscillation frequency is set by the values of R1, R2 and C2.) The circuit's output is sent to the capacitor/ diode voltage-doubler network made up of C4, D1, C5, and D2. That network produces a voltage that is about twice the supply voltage. Capacitor C1, across the supply, prevents the $3-\mathrm{kHz}$ output of the 555 from being fed back to the IC, and C3 stabilizes the circuit.

The voltage-doubler circuit of Fig. 10 will operate from any DC supply offering from 5 to 15 volts. As a voltage doubler it can provide outputs from about 10 to 30 volts. Higher output voltages can be obtained by adding more multiplier stages to the circuit circuit. Figure 11 is the schematic for a DC-voltage tripler that can supply from 15 to 45 volts, and Fig. 12 is the schematic for a DC voltage quadrupler that supplies from 20 to 60 volts.

The DC negative-voltage generator is a particularly useful $555-$ based converter circuit. It supplies an output voltage that is almost equal in amplitude but opposite in polarity to that of the IC supply. This circuit can provide both positive and negative voltages for powering opamps and other IC's with dual power requirements from a positive supply. The DC nega-tive-voltage generator in Fig. 13, like that shown in Fig. 10, is a $3-$ kHz oscillator that drives a volt-age-doubler output stage made up of C4, C5, D1, and D2.
Figures 14 -a and 15 show DC to AC inverters that change input DC voltage to output AC voltage by means of transformer coupling. The AC voltage from these inverters needs no further conditioning, and it can be converted back into higher DC voltages with the addition of only a half- wave rectifier and a capacitor filter.
The inverter shown in Fig. 14a can drive a neon lamp with its AC output. If the lamp and resistor R4 are replaced by the diode and capacitor filter as shown in Fig. 14-b, the AC output can be converted back to a low-current, high-voltage DC output. For example, with a 5 to 15 -volt DC input, the inverter can produce an output of several hundred volts DC.
The 555 in Fig. 14-a is configured as a $4-\mathrm{kHz}$ oscillator and its square-wave output from pin 3 is fed back to the input of audio transformer T1 through resistor R3. Transformer T1 has the necessary ratio of primary to secondary turns to produce the desired output voltage. For example, with a 10 -volt supply and a 1:20 turns ratio on T1, the unloaded output of T1 will be 200 volts, peak.
The DC-to-AC inverter schematic of Fig. 15 produces an AC output at line frequency and voltage. The 555 is configured as a low-frequency oscillator, tunable over the frequency range of 50 to 60 Hz by freguency potentiometer R4. The 555 feeds its output (amplified by Q1 and Q2) to the input turns of transformer Tl, a re-verse-connected filament trans-

E-N Engineering Admart

Rates: Ads are $21 / 4^{\prime \prime} \times 27 / 3^{\prime \prime}$. One insertion $\$ 995$ each. Six insertions $\$ 950$ each. Twelve insertions $\$ 925$ each. Closing date same as regular rate card. Send order with remittance to Computer Admart, Electronics Now Magazine, 500-B Bi-County Blvd., Farmingdale, NY 11735. Direct telephone inquiries to Arline Fishman, area code-1-516-293-3000. FAX 1-516-293-3115. Only 100\% Computer ads are accepted for this Admart.

"Chip" experts agree with Dr. Munk. TEC1's PC based microcontroller development tools are the most cost effective for veterans or beginners.

6805 PRLMER FOR BEGINNERS, \$195,00 6805/68HC05/68HCH CROSS ASSEMBLERS. 599.00 680SIG8HCOS SIMULATOR / DEBUGGERS 599.00 68705P3,PS,U3,U5,R3,R5 PROGRAMMERS FROM $\$ 349,00$ $68 \mathrm{HC} 705 / 68 \mathrm{HC8} 05$ PROGRAMMERS FROM $\$ 395.00$ COMPLETE PC BASED DEV. SYSTEMS FROM $\$ 449.00$ GSHCUSGXHCII REAL TIME EMULATORS FROM $\$ 99500$

TEC

CALL TOLL FREE 1-800-336-8321 The Engineers Collaborative, Inc. Rt \#3 Box 8C, Barton, VT 05822 USA TEL:(802)525-3458 FAX:(802)525-3451

CIRCLE 184 ON FREE INFORMATION CARD

MIDI PROJECTS

BP182-MIDI interfacing enables any so equipped instruments, regardless of the manufacturer, to be easily connected together and used as a system with easy computer control of these music systems. Combine a computer and some MIDI instruments and you can have what is virtually a programmable orchestra. To order your copy send $\$ 6.95$ plus $\$ 2.50$ for shipping in the U.S. to Electronic Technology Today Inc., P.O. Box 240, Massapequa Park, NY 11762-0240.

HIGH POWER AUDIO AMPLIFIER CONSTRUCTION

BP277-Here's background and practical design information on high power audio amplifiers capable of 300 ± 400 watts r.m.s. You'll find MOSFET and bipolar output transistors in inverting and non-inverting circuits. To order your copy send $\$ 6.25$ plus $\$ 2.50$ for shipping in the U.S. to Electronic Technology Today Inc., P.O. Box 240, Massapequa Park, NY 11762-0240.
former with the necessary stepup turns ratio. Capacitor C4 and coil Ll filter the input to T1, assuring that it is effectively a sinewave.

A CMOS version of the 555

The standard bipolar 555 timer IC is still one of the most popular and versatile IC's today, but it has some drawbacks that were overcome by a CMOS version. For example, the 555 will not operate from voltages less than about 5 volts. Moreover, it typically draws 10 milliamperes of quiescent current when run from a 15 -volt supply. This rather large current drain makes it unsatisfactory for most battery-powered circuits.

In addition to those shortcomings, the 555 produces a massive 400-milliampere current spike from the supply as its output is switched from one state to the other. A spike, lasting only a fraction of a microsecond, can cause lost bits in digital circuits near the 555 or powered from the same supply.

The CMOS version of the 555 timer, also able to operate in both monostable and astable modes, is known generically as the 7555. Figure 16 shows the functional block diagram and pinout of the 7555 . This can be compared with the functional block diagram of Fig 1. Note that the pinout is identical.

Harris Semiconductor's version of the 7555 , for example, is designated the ICM7555. In common with all other 7555 's, it will run from $\mathrm{a}+2$ - to +18 -volt DC supply. Notice that the resistors in its internal voltage divider are 50 K rather than the 5 K of the 555 . Other sources of the 7555 are Maxim (ICM7555) and Sanyo (LC7555).

Supply current to the 7555 is typically only 60 microamperes when run from an 18 -volt supply. In addition, typical TRIGGER, THRESHOLD, and RESET currents are 20 picoamps, orders of magnitude lower than those of the bipolar 555. Those low currents permit the use of higher impedance timing elements for longer

RC time constants. The 7555 can be organized to time out in periods from microseconds to hours.

Table 2 compares the characteristics of the 7555 to those of the 555 . The 7555 permits:

- Lower supply current
- Wider supply voltage range
- Lower power dissipation
- Lower current spikes in output transitions
- Higher switching frequency performance

These improvements must be balanced against the higher cost of the 7555. The 7555 should be specified only if:

- It is to be used in a batterypowered circuit where power economy is critical
- Available power is 5 volts or less (too low for the 555)
- It is to be in digital circuitry whose signal output could be degraded by noise.
The 7556 is the dual CMOS counterpart of the bipolar 556. The 7555 can directly replace any 555 in all the circuits presented in this series.

R-E

TUMBLING PRICES AND SURGING power have brought computers into nearly every facet of our lives. Gone forever are the days when only large companies could afford computers. No longer does it take a mainframe that nearly fills an entire room to sort business records or do mind-bending arithmetic. Today's powerful yet affordable desktop machines are taking on exciting new chores in every phase of business-and the home.

According to the Electronic Industries Association (EIA), the computer and peripheral market more than doubled during the 1980 's, from $\$ 24.3$ billion in 1980 to $\$ 56.1$ billion in 1990, as shown in Fig. 1. According to the EIA, the home computer market grew 50\% in one three-year period, from $\$ 4.5$ billion in 1988 to $\$ 6.4$ billion in 1991. In addition, personal computers can be found in 33% of the homes in the United States.

Today's computers can crunch reams of data at blinding speeds, but improvements in monitor technology have also increased the number of computer applications. Desktop publishing systems that combine text and graphics are bringing print-shop quality to financial reports, company newsletters, and sales presentations. Surgeons create comput-er-generated, 3-D images of their patients' insides long before they pick up a scalpel. Landscape artists design lifelike layouts with trees, shrubs, and flowers before turning a single spade of dirt.
Monitor manufacturers are continually working to improve graphics clarity and resolution, and large strides have occurred during the past decade. The monitors of the early eighties had poor resolution and fuzzy graphics compared to those on the market today. Today's mainstream monitors are capable of displaying crisp graphics and
text. High-end monitors produce fabulous pictures with crystal-clear resolution.

Monitor improvements

These improvements have come about as a result of enhancing four primary perfor-mance-defining characteristics: horizontal frequency, horizontal resolution, vertical frequency, and vertical resolution, as shown in Fig. 2. Each is defined below:

Horizontal Frequency The number of times per second the electronic beam travels horizontally across the CRT and back. Horizontal scan time is the inverse of horizontal frequency ($1 / f_{\mathrm{h}}$).

Horizontal Resolution The number of dots or picture elements ("pixels") that can be displayed horizontally. A pixel is the smallest dot the monitor can display.

Vertical Frequency The number of times per second the electron beam travels from the

FIG. 1-SALES OF COMPUTERS AND PERIPHERALS surged in the 1980's, and continue to grow in the 1990's.

FIG. 2-COMPUTER MONITOR PERFORMANCE can be defined by four characteristics: horizontal frequency and resolution, and vertical frequency and resolution.
top of the CRT to the bottom and back. Vertical scan time is the inverse of vertical frequency ($1 / f_{v}$).
Vertical Resolution The number of picture elements displayed vertically on the CRT. Vertical resolution is comparable to the number of "lines" in
television terminology.
A fifth characteristic, dot pitch, also plays a role in determining the resolution of a monitor. Dot pitch is the distance between like colors in the shadow mask. Dot pitch determines the size of the smallest pixel a color CRT can display.

The smaller the dot pitch, the sharper the image. Typical values of dot pitch are between 0.26 and 0.50 mm . Figure 3 shows the distance between the centers of two red dots.

Today's high-resolution

FIG. 3-DOT PITCH is the distance between like colors in a CRT shadow mask.
monitors represent improvements over their predecessors in several ways, including increased horizontal and vertical frequency and resolution, and decreased dot pitch. On early monitors, the electron beam typically took $63.7 \mu \mathrm{~s}$ (corresponding to a frequency of 15.7 kHz) to scan one line. Today it is not uncommon for the beam to complete its trip in $13.0 \mu \mathrm{~s}$ (76.9 kHz) or even less, as shown in Fig. 4.

In addition, more pixels are being displayed per horizontal line, and more lines are displayed per frame. Whereas early computer monitors had 640 horizontal pixels and 200 lines, common monitors today have 1,024 horizontal pixels and 768 lines-or more. A faster scan rate gives the monitor extra time to display additional lines and pixels.

Video bandwidth

Video bandwidth is the highest frequency the monitor's video circuits can pass. In general, higher resolution requires higher bandwidth. A visual indication of sufficient bandwidth comes from displaying a pattern that produces a singlepixel line, as shown in Fig. 5.

To get a basic understanding of the bandwidths required by high- and low-resolution monitors, let's calculate the bandwidth required by each.

FIG. 4-A HIGH-RESOLUTION MONITOR scans across the screen more than four times, while a low-resolution monitor does so once.

We'll analyze a high-resolution monitor that scans at 64 kHz and displays 1024 pixels per line, and a low-resolution monitor that scans at 15.7 kHz and displays 640 pixels per line.

High-Resolution Bandwidth Inverting the horizontal scanning frequency (64 kHz) gives a total horizontal scan time of $15.6 \mu \mathrm{~s}$. As shown in Fig. 6, about 80% of that time is for active video (what's seen on the monitor) and about 20% is for blanking. Using the $80 / 20$ ratio in the example translates into $12.5 / 3.1 \mu \mathrm{~s}$ active/blanking. If it takes $12.5 \mu \mathrm{~s}$ to display 1024 pixels, it therefore takes $12.5 / 1024=12.2 \mathrm{~ns}$ to display a single pixel. Inverting that figure gives a bandwidth of 81.9 MHz . So, to see a crisp, distinct line, one pixel wide, the bandwidth of the video amplifiers in a high-resolution monitor must be 81.9 MHz or greater.

Low-Resolution Bandwidth

 A horizontal scan rate of 15.7 kHz gives a horizontal scan time of $63.7 \mu \mathrm{~s}$. Eighty percent of that is $51.0 \mu \mathrm{~s}$, during which 640 pixels will be displayed. Thus the time per pixel $=$ $51 / 640=79.6$ ns. Inverting that figure gives a low-resolution bandwidth of 12.6 MHz .
Computer monitors

Monitors can be divided into three basic categories: digital, analog, and ECL (emitter-coupled logic). Digital and analog monitors can be either monochrome or color. ECL monitors are always monochrome.

The video input signals to a

FIG. 5-A ONE-PIXEL VERTICAL LINE is a good indicator of a monitor's maximum bandwidth. A crisp, distinct line shows that the monitor has sufficient bandwidth.
er than 2 volts) or low (less than 0.8 volts). A color digital monitor has red, green, blue and (usually) intensity inputs, and it can display as many as 64 colors, depending on the binary code on the RGBI inputs. Figure 7 shows how different combinations of 1's and 0's translate into different colors on a digital color monitor. A digital monochrome monitor can display as many as 64 shades of gray (or green or amber, depending on the phosphor), also by using combinations of logic levels.
An analog monitor can display an infinite number of colors (or shades of gray). The video signal fed to an analog monitor is usually 0.7 volts peak-to-peak (black to white).

FIG. 6-A TYPICAL VIDEO SCAN LINE consists of 80% active video and 20% blanking.

FIG. 7-A DIGITAL-INPUT MONITOR PRODUCES COLORS based on various combinations of signals. For example, the monitor displays magenta when red and blue are high and green is low.
digital monitor are TTL logic levels that are either high (great-

Figure 8 illustrates the correspondence between analog in-
put voltage and gray level.
To achieve fast switching time and higher resolution, some high-end monitors use ECL IC's. ECL monitors are monochrome, can display only a limited number of shades of gray, typically have a 19 -inch or larger screen, and horizontal resolutions greater than 1024 pixels.

Video adapters

Most IBM-compatible personal computers have a video adapter card that is responsible for generating the video and sync signals used by the monitor. There are many standards for the different video formats, as shown in Table 1. Each format has a different resolution and scan rate. Fixed-frequency monitors are built to handle just one format; multi-

FIG. 8-AN ANALOG MONITOR can display an infinite number of colors or shades of gray.
frequency monitors can handle several. Digital monochrome monitors are least expensive, followed by analog monochrome monitors, followed by fixed-frequency color monitors, followed by multi-frequency color monitors.

IBM introduced the CGA and MDA formats in the early 1980's. Both are digital formats. CGA provides 16 colors and can display bit-mapped graphics at a resolution of 640×200 MDA

TABLE 1-COMMON COMPUTER MONITOR FORMATS

System/Mode	Horizontal Frequency (kHz)	Vertical Frequency (Hz)	Horizontal Resolution (Pixels)	Vertical Resolution (Lines)
Color/Graphics Array (CGA)	15.7	60	640	200
Monochrome Display Adapter (MDA)	18.4	50	720	350
Hercules Graphics Adapter (HGC)	18.4	50	720	350
Enhanced Graphics Adapter (EGA)	21.8	60	640	350
Professional Graphics Adapter (PGA)	30.5	60	640	480
Video Graphics Array (VGA) Mode 1	31.5	70	640	350
Video Graphics (VGA) Mode 2	31.5	60	640	480
Video Graphics (VGA (Mode 3)	31.5	70	720	400
Super VGA	35.2	56	800	600
8514A	35.2	87	1024	768
Extended Graphics Adapter (XGA)	35.2	87	1024	768
Apple Macintosh II	35.5	67	640	480

provides only two shades of a single color and cannot display graphics. The Hercules card met a need by providing total compatibility with the MDA and also providing the ability to display bit-mapped graphics, e.g., graphs in Lotus 1-2-3.

IBM introduced the EGA standard in 1984. EGA's increased scanning frequency allowed a significant improvement in resolution over CGA, from 200 to 350 lines (horizontal resolution remained the same). EGA is a digital standard that can simultaneously display 16 of a total of 64 colors.

Next came IBM's PGA standard, in 1985. It was the first PC-based analog format, with TTL composite sync. The scanning frequency increased EGA's 21.8 kHz by about 50% to 30.5 kHz . The PGA standard displays 256 colors out of 4096.

IBM introduced the VGA standard in 1987. VGA produces analog video with separate TTL sync, and a horizontal scan frequency of 31.5 kHz . VGA can display 256 colors out of 256,000 in a low-resolution mode, and 16 colors in a text mode. VGA increased vertical resolution from 350 to 480 lines, again keeping horizontal resolution the same at 640 .

After VGA started to become popular, the market demanded even more resolution and color. IBM introduced the 8514, but prices were high, and at first only a model for the PS/2 was available. So video-card vendors
introduced a variety of Super VGA formats that typically-maxout at 1024×768, with 256 colors. IBM later introduced XGA, the current version of which supports $1024 \times 768 \times$ 256. There are rumors that an upcoming 80×86 microprocessor from Intel will have a built-in XGA video processor.

The Macintosh II standard produces an analog video signal with separate composite TTL sync. Other MAC standards place the composite sync on the green video line. Some Macintosh video cards are capable of producing 256 colors from more than 16 million. These cards are also available for PC's.

The video formats shown in Table 1 illustrate the vast changes that have occurred in the PC side of the computer market during the past ten years. But the chart doesn't tell the entire story; these are only the monitors sold for mainstream applications (e.g. word processing, spreadsheets, and home finance). In other areas (e.g., engineering workstations, medical imaging devices, high-end publishing equipment), it is not uncommon for monitors to have resolutions of 2,048 pixels or more, and horizontal scan frequencies three to four times greater than that of VGA. Wouldn't it be great to have one of those monitors sitting on your desk? If current market trends continue, there's a good chance that you willand soon.

The latest in electronics is only a phone call away! 1-800-221-7774

AIWA CSD-EX1
PORTABLE LCD
RADIO CASSETTE CD PLAYER

- High power output
- Power saving switch plus auto stop
- 20-selection random programmable memory CD
- AM wide/FM stereo tuner
(AIW-427)
Auv-427 Our Price
sugg. Retall 479.95 \$13995

PANASONIC RO-S35V AM/FM STEREO CASSETTE PLAYER WITH AUTO REVERSE

- Uitra compact size
- Digital synthesizer tuner
- with 7AM/7FM presets
- S.XBS \& DOIDY NR
- ICD tpae/radio display
- Dual clock/alarm functions
- One button wired remote inctudes:
Rechargeble battery and charger (PAN-275*:

Our Price sugg. Retall '209.95 $\$ 169^{95}$

PANASONIC KX-T4300 CORDLESSPHONE WITH ANSWERING MACHINE

- 10 channel access - Rubber antenna
- Tone/pulse $\cdot 2$-way paging
- 10-number speed dial - Message alert
- LED readout
- 11-function tone remote
- Auto logic operation
(PAN-4300)
Sugg. Retall 499.95 $\$ 159^{95}$

AIWA NSX-330
30W/Ch HI-FI MINI COMPONENT
SYSTEM WITH SURROUND SOUND

- Super T-bass
includes:
3-preset graphic equalizer
5-band spectrum analyzer
- Wireless remote
- FM/AM tuner with 32 -station
random preset
- Dual auto reverse cass w/Dolby 8 NR
- Optical digital output terminal
- 3-way speaker
(AW-424)
Sugg. Retall ${ }^{5} 560.00$
Our Price
$\$ 399^{95}$

SONY

- Broadcasts up to 9 ft .
- Auto reverse Mega Bass $2 \times$ sound system with variable control
variable co
- DON.3483)

Sugg. Retail ${ }^{2499.95}$ Our Price
$\$ 179^{95}$

PANASO,FIC KX-T9000 900MhZ POCKET-SIZED FOLDING CORDLESSPHONE
Operates on $902 / 928 \mathrm{Mhz}$

- sound Charger technology
- 30ch auto scan - Auto intercom
- 2 interchangeable batteries

2-way paging \& auto intercom
10, 20 digit no. auto dial

- Handset Auto switch to taik mode
(PAN-9000)
Sugg. Retall 1499.95 $\mathbf{\$ 3 9 9}{ }^{95}$

WITH IN CAR USE

- 1 -bit dual D/A converter
- 8 -times oversampling digital filter - optical digital output terminal - 24-random programmable memory - Heat-resistant for in car use - Random play with 3 -way repeat incuaces pectargeabie bastery baso, stereo headphones with remote control AC adaptor recrarget and connection cora Sugg. Retail 1280.00 Our Price Sugg. Retail ${ }^{1280.00} \quad \$ \mathbf{2 4 9} 95$

SHARP 10-8400 ELECTRONIC ORGANIZER

- 256 KB memory
- Typewriter style keyboard
- Hi-contrast 40 char
by 8 line screen
- Month/week \& day calendar
- 3 phone directories
- Business Card function our Price
$\begin{array}{ll}\text { (SHA-840G) } & \$ 31995 \\ \text { Sugg. Retail }\end{array}$

CASIO BP-100
BLOOD PRESSURE
MONITOR WATCH

- Water resistant to 50 meter
- 12/24-hour formats
- 3 multi-function alarms
- Altimeter, Depth meter \& Barometer
- Countdown alarm
- 1/100 stopwatch Our Price
sugg. Retall M69.95 \$12995

8 mm CAMCORDER WITH
8:1 POWER ZOOM

- High speed shutter
- 180° FlexiGrip
- 2.lux low light
- Sports finder (CAN-6300)
super Value!

SONY XVT-600
ADD PRO STYLE SUPERIMPOSED
TITLES TO YOUR VIDEOSI

- 15 color picture computer superimposes picture title or background to video
- Draw lines, add colorendless possibilities! SALEI (SON-409)
$\$ 109^{95}$
Sugg. Retall ' 600
$\$ 10$

PANASONIC CTP-2066S
20" STEREO MONITOR-RECEIVER WITH S-VHS INPUT IOver 500 ilnes horizontal resolution) - Audlo/Video Input Jacks - Unifled TV/VCR remote (PAN-2796) sugg. Retall '499.95 $\$ 357^{95}$

SALEI

Electronics

TWO TRANSMITTERS IN ONE! 5 MINUTE

 ASSEMBLY! MONEYBACK GUARANTEE! New Law Enforcement grade device on a single chip is the most sensitive, powerful, stable room transmitter you can buy. Uses any $3 \mathrm{~V}-12 \mathrm{~V}$ battery. Or attach to telephone line to monitor all telephone conversations over 1 mile away without batteries! 100 mW output! $80-130 \mathrm{MHZ}$. Receive on any FM radio or wideband scanner. VT-75 microtransmitter. $\$ 49.95+1.50$ S\&H. VISA, MC, MO. COD's add $\$ 4.00$. DECO INDUSTRIES, Box 607, Bedford Hills, NY 10507. 914-232-3878.CIRCLE 127 ON FREE INFORMATION CARD

CABLE TV CONVERTERS AND DESCRAMBLERS SB-3, TRI-BI, MLD, M35B, DRZ-DIC. Call for catalog and price list. Special combos available. We ship COD. Quantity discounts. Call for pricing on other products. Dealers wanted. FREE CATALOG. We stand behind our products where others fail. One year warranty. ACE PRODUCTS, 1-800-234-0726.

CIRCLE 75 ON FREE INFORMATION CARD

WORLD'S SMALLEST FM TRANSMITTERS! New Surface Mount Technology (SMT) makes all others obsolete! XST500 Transmitter-powerful 3 transistor audio amplifier, transmits whispers up to 1 mile. XSP250 Telephone Transmitter-line powered, transmits conversations up to $1 / 4$ mile. Both tune $88-108 \mathrm{MHz}$. Easy to assemble E-Z KITS (SMT components preassembled to circuit board)! XST500\$39.95, XSP250-\$29.95, VISA/MC. COD add \$5. XANDI ELECTRONICS, 201 E. Southern Ave., Suite 111, Tempe, AZ 85282. 1-800-336-7389.

CIRCLE 193 ON FREE INFORMATION CARD

CABLE TV 50dB NOTCH FILTERS for interference removal or channel censoring. Filters are user-adjustable to desired channel \# or frequency. Eight Models available, each for certain channels: 2 \& $3 ; 4$ to $6 ; 7$ to 13; 14 to 17; 18 to $22 ; 23$ to $29 ; 30$ to $36 ; 95$ to 99 plus 0 \& 1. Just $\$ 30$ each or 3 for $\$ 75$, includes shipping. ONE MONTH MONEY BACK, fast delivery. Visa, MC, check or M.O. (C.O.D. is $\$ 5$ extra) Huge discounts for higher quantities. STAR CIRCUITS, P.O. Box 94917, Las Vegas, NV 89193. Call 24 hours 1-800-535-7827.

GET YOUR RECHARGE CATALOG FREE...EARN BIG \$\$ IN YOUR SPARE TIME-All supplies and Do-It-Yourself kits with complete instructions available. Supplies cost from $\$ 9.95$ in qty and you can sell recharged toner cartridges for $\$ 40.00$ to $\$ 55.00$ each. Printers include HP LaserJet and Series II, Apple LaserWriter, QMS, etc. Canon PC-25 Copier also. CHENESKO PRODUCTS, 2221 Fifth Ave., Suite \#4,
Ronkonkoma, NY 11779, 516-467-3205. FAX 516-467-3223, 1-800-221-3516 CIRCLE 181 ON FREE INFORMATION CARD

CALL NOW AND RESERVE YOUR SPACE

- $6 \times$ rate $\$ 940.00$ per each insertion.
- Fast reader service cycle.
- Short lead time for the placement of ads.
- We typeset and layout the ad at no additional charge.
Call 516-293-3000 to reserve space. Ask for Arline Fishman. Limited number of pages available. Mail materials to: mini-ADS, ELECTRONICS NOW, 500-B Bi-County Blvd., Farmingdale, NY 11735.

WHAT'S NEWS

continued from page 6

the development of table-top, laserpowered particle accelerators, as opposed to today's massive, expensive accelerators. Another potential use for supercharged laser beams is the development of an X-ray laser capable of observing the molecular and atomic action of living cells.
The secret to the record-breaking power levels is a technique called chirped-pulse amplification, in which laser pulses are first produced in short bursts of a fraction of a picosecond (about one trillionth of a second). The duration of the pulses is then stretched out about a thousand times before the pulses enter the laser's amplifier. After amplification, the pulse is compressed back to the original fraction of a picosecond burst.
The research teams' "ultimate goal," according to Jacques Coutant, department head at the Centre, "is to push the power of the beam to 1000 terawatts." R-E

HDTV service, since most major cable systems have channels to spare. It's easy to see the possibility of a pay channel carrying movies in widescreen near-theater definition, the way they were intended to be seen. In fact, HBO and other pay cable operators are excited over the prospect. The same is true of the proposed multi-channel direct satel-lite-to-home systems, such as Hughes Aircraft's DirecTV, which seem certain to earmark some channels for HDTV.

The real key to the equation lies with consumers. Will they be willing to pay $\$ 2000$ and up-perhaps way up-for the first HDTV sets when there is little or no programming? Test after test shows average viewers regard program content as more important than picture quality. A massive education job and some significant program pump-priming seem indicated if HDTV is to catch on in a faster time frame than color TV's 10 years.

FAX: 516-293-3115

Welcome to...

SCIENCE PROBE!

The Amateur Scientist's Journal
Embark on an irresistible new journey into the realm of mystery, challenge, and exploration! The perfect magazine for the budding scientist, the serious amateur, the professional who would like to relax, and those who simply want to gaze at the stars.

Articles to appear in upcoming issues of Science PROBE! are:

Inside Internet-A Scientific Computer Network Make your own Seismometer Operate a Solar-Powered Weather Station Assemble a Solid-State Portable Barometer The Bicycle-A Traveling Scientific Laboratory

If you're fascinated by science in all its many forms, if you are compelled to experiment and explore, then Science PROBE! is your kind of magazine!

For Faster Service-Call Today: 1-800-777-5489

[^0]Work from home-Earn $\$ 85$ HR! With the tens of millions of VCRs and Camcorders in use, there
currently is a serious shortage of trained techs to perform cleaning and repair jobs on these popular devices... Learn how you can start you own highly profitable, Home-Based video servicing business... And since up to
95% of all VCR and
Camcorder malfunctions are due to a simpl mechanical or electromechanical
failure, you need not spend months or even years of momis or even years of complicated study before starting paid, professional service work!
Let Viejo's Training Program show you how!

INRUSH CURRENT LIMITED

continued from page 50

FIG. 10-EXPLODED VIEW OF INRUSH-CURRENT limiter circuit in enclosure. Note the completion of ground within the case with a 3-wire power cord.
the completed circuit. Pull the three-wire cable through a grommet in the case sidewall as shown. Strip the jacket from the cable in the case, strip the end of the green ground wire, and connect it to the ground terminal of the three-prong receptacle. Solder one of the cable's conductors to the PC board, as shown, and solder the other conductor to one terminal of the switch.

Using short insulated lengths of the same cable conductor, solder a connection from the switch to the other side of the PC board, as shown. Solder two more short lengths of conductor to the output pads on the PC board, and connect their other
ends to the panel-mount receptacle.

Fasten the circuit assembly in in the case with hold-down screws and close the cover. Fasten the cover in position with the four screws included. The inrush-current limiter then becomes a plug-in accessory and the host equipment need not be altered. The equipment's power switch should be clamped in the "on"position so that power to the equipment is then applied with the limiter's ON-OFF toggle or rocker switch.

Although the surge protector is in the circuit only for short time intervals, be sure that any protected equipment does not draw more than 2 amperes. R-E

HARDWARE HAMKTR

Conventional currents, assorted wonderments, navigation and navicubes, FM Yagi antenna design, and two new piezo rate gyros.

DON LANCASTER

so many exciting new hacker opportunities have come down this month that I do not even know where to start. We seem to be moving into a boundless new era of hardware hacking.

Before we begin, though, there have been a few recent helpline calls over some really ancient history which we should go over one final time...

Follow that current!

Which way does the current travel in any electrical or electronic circuit? Many years ago, one of the electrical pioneers ventured his wild guess that electrical current always goes from the negative to the positive terminal in an energy source and from positive to negative in an energy sink.

It took over a century to verify, but the guess turned out to be correct. At least for certain solid-state circuits, at least some of the time.

To this day, this guess is called the conventional electrical current, and appears in Fig. 1. Conventional current is the only standard taught in all university- and all graduatelevel engineering courses, is used by all physicists, and is accepted by all large electronic firms worldwide.

Conventional current is shown in the direction of the arrows on all the standard electronic symbols. Even the IEEE tie clasp and cuff links strongly restates conventional current. So does the right-hand generator rule and left-hand motor rule.

Yeah, but just which way does the current really go? Well, a glib answer for the new age nineties is "any way you want it to."

In semiconductor loads, the current direction is decided by the majority carriers. In any PNP transistor or any P-channel MOSFET, conduction is by hole carriers, and the current does in fact go in exactly the same direction as the conventional
current. In N -type devices, the current is the opposite of the conventional current direction.

So what is the problem? And why am I standing here whipping this long-dead horse?

Way back during World War II, PNP vacuum tubes were very few and far between. Come to think of it, they still are. Because of that, the military introduced the concept of the electron current to explain how a vacuum tube works. And many trade schools and lower-level textbooks continued the practice into the fifties and sixties.
That led to the absurd result that a few hackers, technicians, and much of the hobby press had their currents heading in one way, while all of the engineers, physicists, and the rest of industry had their currents heading in the exact opposite direction.
The bottom line: If any individual or any textbook still tries to teach you electron current, they are ripping you off. They are also doing you a serious disservice that will lead you to untold confusion and latter day hassles.

Neither electron nor conventional current is correct all of the time. The overwhelming majority of industry and professional-level training always goes with the conventional current. Among the other reasons, because there is no compelling reason not to.

NEED HELP?

Phone or write your Hardware
Hacker questions directly to:
Don Lancaster
Synergetics
Box 809
Thatcher, AZ 85552
(602) 428-4073

Just what would it take to convert industry over to electron current? For openers, extremely frigid conditions in a distinctly unpleasant locale. Or some words to that effect. Even then, I would not expect to see this happen until a few weeks after the Ayatolla's Bar Mitzvah.

Navicube update

Way back in a July 1988 Hardware Hacker, we looked at the Navicube, a 3 -inch, $\$ 10$ cube that always knew where it was and which way it was pointed. Well, we still don't have $\$ 10$ Navicubes, although I do expect some Korean toy manufacturer or two kids in an lowa basement to come up with a really good one shortly.

A lot is happening with Navicubes, both evolutionary and revolutionary. An update summary of Navicube info appears as our resource sidebar.

Today's popular approaches to the Navicubes include the GPS satellite system, fluxgates, real gyros, laser gyros, accelerometers, and a pair of brand new piezo gyros.

The GPS global positioning system is going great guns. Their eighteenth satellite is now in orbit, and Russian and ECC competing systems are now being established. Receiver prices are in free fall, and the $\$ 500$ barrier has recently been broken.

GPS World is your foremost trade journal. Its publisher also just started up a new GPS World Showcase shopper. As before, the Journal of the Institute of Navigation is the finest Navicube technical resource.

Although Rockwell is still the most obvious source for the GPS chip sets, Hewlett Packard has just developed a new single-chip GPS front end. While it's too early for a part number, several details now appear in Microwaves \& RF for August

FIG. 1-CONVENTIONAL ELECTRIC CURRENT goes from negative to positive in any energy source and from positive to negative in any energy sink. This is the standard used by all graduate engineers and physicists, and in electronic symbols, and the industry worldwide. It even appears on the IEEE cufflinks.
1992. I expect cheap new GPS parts real soon now, from several obvious sources.
North sensing isbest done using fluxgate magnetometers. Radio Shack has a cheap one in its car compass, and $K V H$ sells expensive commercial units. We have seen several fluxgate construction projects, and references to them in those Hardware Hacker II reprints. Naturally, any magnetic sensor gets confused by nearby iron.

Many hackers still labor under the delusion that Hall-effect devices can be used as compasses. Well, possibly they can, but fluxgates are thousands of times more sensitive.

One exception is the very low cost Dinsmore magnetic compass sensor. Sadly, its best possible accuracy is a crude 22.5 degrees.

Solid-state accelerometers continue to drop in price, spurred on by newer automotive uses, especially airbags. While Motorola and Micro Switch are the largest suppliers, the better priced and more innovative sensors are now provided by Analog Devices, SenSym, IC Sensors, and NovaSensor.

Your two best accelerometer trade journals are Measurement \& Control and Sensors.

Note that you could integrate (sum through time) any acceleration to get velocity, and then integrate velocity to get the position. There is one huge technical hassle with accelerometers, though-it's called the " t-squared" problem. Any bias or similar error in acceleration ultimately piles up as a position error that is proportional to time squared.
That means if you wait around long enough for your position, it is certain to be wrong. Accelerometers work best for short-term uses, when they can be repeatedly recalibrated or reset from some other standard every now and then.

Classic navigation is usually done by using mechanical gyros. They are nothing but rapidly spinning masses, comparable to a toy gyroscope. They can be costly, cumbersome, and often involve precision elements rotating at very high speeds. Gyros are available as surplus from

Fair Radio Sales, Radio Research Instruments, and AST Servo Systems. One current manufacturer is Humphrey Products.

Yes, there are laser gyroscopes. A coil of fiber-optic cable has coherent laser light beams routed through it in opposite directions which then can be phase compared. But not much seems to be happening here to drop the costs by the 1000:1 needed to make them a practical hacker tool. Good information on laser gyroscopes is available from the IEEE Press and from SPIE.

But our really big Navicube gyro news for this month involves a pair of brand new...

Solid-state rate gyros

A rate gyro is a special gyroscope that can tell you how fast you are turning. By integrating your rate of turn, you can get your direction. By combining that with some separately measured velocity, you can find your present position. And there will be no t-squared problem, since no double integration is involved.

Traditional rate gyros are available from the sources of regular gyros we just looked at. A hackable and a low-cost fluidic rate gyro was made a few years back by Doug Garner at NASA. It used an airstream differential cooling a pair of thermistors. But not too much seems to have come of that approach either.

A pair of new solid-state rate gyros are now available. At least one of them promises to end up as a $\$ 5$ component. Because they both use vibrating piezo structures, it is not quite correct to say that they have no moving parts. But they certainly are simple and rugged single-piece units with no rotating parts or precision mechanisms.
The first unit is the GyroChip by Systron Donner, shown in Fig. 2-a. This is a pair of back-to-back tuning forks machined from a single piece of silicon. The phase of the output signal it determined by the Coriolis force caused by turning.

The second piezo gyro is that new Gyrostar by Murata-Erie, shown in Fig. 2-b. This is just a triangular piezo oscillator. The Coriolis force of rotation again changes the phase of the output signal in propor-

(A) The Systron-Donner GyroChip is based on two coupled tuning forks. The Coriolis force from any rotation around the vertical axis changes the phase and amplitude of the synchronously demodulated output signal.

DRIVER
(B) The Murata-Erie GyroStar is based on carefully controlled vibration modes in a triangular piezo element. Any relative clockwise or counterclockwise rotation changes the phase and amplitude of the output signals.

FIG. 2-NEW DEVELOPMENTS IN PIEZO RATE GYROS should eventually lead to low cost Navicube solutions. A rate gyro tells you how fast you are now turning. Integrating the turn rate (summing through time) gives the present direction.
tion to the rotation rate. This new scheme looks ridiculously simpler and vastly more elegant than the GyroChip design.
While both of those breakthrough devices have the potential to become low-cost parts, samples today cost $\$ 300$ for Murata's GyroStar, and a ludicrous \$2000 for the GyroChip. Their support literature so far is also utterly dismal. But a new $\$ 5$ Hong Kong knockoff is just about certain to become quickly available.

Assorted wonderments

Continuing this month's stunning new developments, here is a double handful of great new stuff...

- Image Striking-Be sure to check out Motion Imaging Processing: Striking Possibilities in the August 1992 issue of Advanced Imaging. What we apparently have here is a unique new concept and toolset for video, movie, and multimedia editing.

Put one frame of a small image in
the upper left of your monitor screen. Next, move down one pixel and one pixel to the right, and then repeat the process for the next frame in the sequence. Continue until you have a diagonal smirp on down your screen, ending with a final full small image. While you are at it, show your sound amplitude for each frame along the top diagonal of the smirp.

What do you have? In one place and at one time, a display that lets you view the temporal content of a time sequence of multimedia or other video. In short, you can instantly look forward or backward through time, seeing the relationship between your current frame, its recent history, and its near future!

Looking at this "striking" concept in a slightly different way, say you had a few feet of movie film. Cut the individual images apart so they have no borders. Stack them up and look sideways at their top and left edges. Once again, in one place and
at one time, you can see what has happened and what is going to happen. An instant and real-time plot of images versus time.

Naturally, the edges will only show you wildly abstract colors or patterns. But, with practice, those patterns can easily be read for the scene, camera angle, panning, duration, sound sync, and much more.
A non-obvious application: Quickly finding a buried sequence in a humongous video data base. It is sort of the video equivalent to that ISAM, or indexed sequential access method long used in data bases.
The editing, tweening, scanning, high-speed access, and all the visual flow possibilities of this new scheme seem boundless.

- Wavelets-The onslaught continues. A second book is now available and titled Ten Lectures on Wavelets by Ingrid Daubechies and published by SIAM, shorthand for the Society for Industrial and Applied Mathematics. While it's a firstrate text, this is a very advanced math book that makes for rough reading by mere mortals.

A brief story on optical wavelet uses appears in the August 1992 issue of Photonics Spectra. All those optics folks sure do have it easy. They just dump a pile of crockery on the table, squirt some light through it, and they get instant realtime 2-dimensional Fourier or wavelet transforms. None of the old point-by-point computation nonsense for them.

An entire issue on optical wavelet transforms appears as the September 1992 issue of Optical Engineering. I have added \#494 EMERGOP2.PS and \#456 WAVELETS.PS to GEnie PSRT to go along with all the rest of our wavelet downloads. A complete list appears in Fig. 3.

- Multilayer PC breakthrough-I am still looking for a hacker solution that makes printed-circuit platedthrough holes cheaply possible at home. Or some workaround that flat out does away with the need for through holes.

A major step in this direction has been taken by Sheldahl, whose new special adhesive lets you build ultra expensive multilayer boards out of
the cheaper double-sided ones. Sadly, you still need some platethroughs.
Their Zlink 1900 is basically a new adhesive that conducts only in its thickness direction. Just take a pair of double-sided boards and selectively apply the adhesive to one of them. You then add heat and pressure to bond the pair together. You can end up with either a three- or a four-layer board at a tiny fraction of the going price. And, yes, you can do six layers, eight layers, or as many as you want. You can even have buried plated-through holes! Far simpler, cheaper, and with a much lower scrap rate than before.

Carefully isolated solder particles make the adhesive conduct in only one direction with conductivity about the same as real multilayer conductors.
A small free sample is available from Sheldahl on request.

- Buckyballs-The price of Buckyballs continues to drop dramatically, and they are now hacker-affordable. The leading supplier remains MER Inc., and their pricing starts as low as $\$ 5.50$ a gram raw, and $\$ 90$ per gram fully refined. Minimum order is \$50.

Meanwhile, a fourth carbon form has been discovered that is called the Buckytube: hollow cylindrical pipes of carbon that have both the hardness of diamond and the surface area of graphite. Possible new uses include their use as lubricants, and unique materials that conduct heavily in only one direction. Check out the August 17 issue of E.E. Times for a summary update.

More on FM antennas

Last month, we checked into the fundamentals of distant FM reception. We have had some requests for still more information, so here goes...

The noise situation at 100 MHz is a tad further complicated than I first made out. If you do have any remote rural site, then your first-stage KTB thermal agitation noise does, in fact, dominate. And the best noise figure you can get is super important.

Atmospheric noise is negligible at FM frequencies. Galactic noise runs ten decibels or so above KTB,

NAMES AND NUMBERS

Advanced Imaging
445 Broad Hollow Rd Ste 21
Melville, NY 11747
(516) 845-2700

CIRCLE 316 ON FREE INFORMATION CARD

Anixter

8101 E Prentice \#210
Englewood, CO 80111
(303) 740-8949

CIRCLE 317 ON FREE INFORMATION CARD

Channel Master
 33 Gaylord Road
 St Thomas, Ont, CAN N5P 3R9
 (519) 631-0320
 CIRCLE 318 ON FREE INFORMATION CARD

Cushcraft

PO Box 4680
Manchester, NH 03108
(603) 627-7877

CIRCLE 319 ON FREE INFORMATION CARD

EE Times

600 Community Drive
Manhassat, NY 11030
(516) 365-4600

CIRCLE 320 ON FREE INFORMATION CARD

GEnie

401 N Washington Street
Rockville, MD 20850
(800) 638-9636

CIRCLE 321 ON FREE INFORMATION CARD

Heartland America

6978 Shady Oak Road
Eden Prairie, MN 55344
(800) 229-2901

CIRCLE 322 ON FREE INFORMATION CARD
MER, Inc
7960 South Kolb Road
Tucson, AZ 85706
(602) 574-1980

CIRCLE 323 ON FREE INFORMATION CARD

MX-Com Inc

4800 Bethania Station Road
Winston-Salem, NC 27105
(800) 638-5577

CIRCLE 324 ON FREE INFORMATION CARD

Optical Engineering
1022 19th Street, Box 10
Bellingham, WA 98227
(206) 676-3290

CIRCLE 325 ON FREE INFORMATION CARD

Photonics Spectra

PO Box 4949
Pittsfield, MA 01202
(413) 499-0514

CIRCLE 326 ON FREE INFORMATION CARD

Play Meter

PO Box 24970
New Orieans, LA 70184
(504) 488-7003

CIRCLE 327 ON FREE INFORMATION CARD

RePlay

22157 Clarendon Street
Woodland Hills, CA 91365
(818) $347-3820$

CIRCLE 328 ON FREE INFORMATION CARD

Sheldahl

PO Box 170
Northfield, MN 55057
(507) 663-8000

CIRCLE 329 ON FREE INFORMATION CARD

Soc Industrial \& Applied Math
 3600 University City Science Ctr
 Philadelphia, PA 19104
 (215) 382-9800
 CIRCLE 330 ON FREE INFORMATION CARD

Synergetics

Box 809

Thatcher, AZ 85552
(602) 428-4073

CIRCLE 331 ON FREE INFORMATION CARD
Victory Engineering
Box 559, Victory Road
Springfield, NJ 07081
(201) 379-5900

CIRCLE 332 ON FREE INFORMATION CARD

Winegard

3000 Kirkwood Street
Burlington, IA 52601
(319) 754-0600

CIRCLE 333 ON FREE INFORMATION CARD
around 100 MHz . But you do not normally point an FM antenna straight up on a clear day, so this is also no problem. The potential killer is the manmade noise, which can be 25 decibels above KTB in suburban locations, and 40 decibels or more in urban locations. Nearby dimmers or computers could also induce
those noise levels.
Most of the manmade noise comes from car ignitions. It sure would be interesting to watch the FCC try to enforce the same Part 15 rules and regulations on Detroit iron that they do on Hardware Hackers. Talk about potential noise levels! The howl over this would probably

DIGITAL VIDEO STABILIZER ELIMINATES ALL VIDEO COPYGUARDS

\#508 HACK58.TXT \& 4509 HACKFG58.PS

Reprint of Hardware Hacker \#58 from Electronics Now. Wavelets update includes optical applications, and new Ten Lectures on Wavelets book.

\#494 EMERGOP2.PS

Reprint of Blatant Opportunist \#17 fron Midnight Engineering. Wavelets are one of the eight hacker-friendly emerging tech opportunities reviewed.

\#456 WAVELETS.PS

Reprint of The Wavelet Onslaught from the Midnight Engineering Companion \#2. Brief summary on wavelets and a key resource bibliography.

\#403 PAK251.EXE

Utility to unPAK an IBM *.PAK* file, such as \#365 WAVELET.PAK
\#390 HACK50.TXT \& \#391 HACKFG50.PS
Reprint of Hardware Hacker \#50 from Radio-Electronics. Wavelets update, including new book, IEEE-SP tutorial, Aware application notes.

\#373 HACK49.TXT \& \#374 HACKFG49.PS

Reprint of Hardware Hacker \#49 from Radio-Electronics. Mentions Wavelets and their Applications book and Ultrawave Explorer soltware from Aware.

\#365 WAVELET.PAK

Complete and ready-to-run IBM Wavelet Packet Lab shareware. This is a .PAK compressed file that needs file \#403 or its equivalent for unpacking.

\#313 GURU73.TXT \& \#314 GURUFG73.GPS

Reprint of Ask the Guru \#73 that discusses three video compression schemes. These include wavelets, DCT/JPEG, and fractal compression methods

\#258 HACK42.TXT \& \#259 HACKFG42.PS

Reprint of Hardware Hacker \#42 from Radio-Electronics. Fundamentals of transforms, along with examples of wavelet video compression.

\#195 HACK38.TXT \& \#197 HACKFG38.GPS

Reprint of Hardware Hacker \#38 from Radio-Electronics. A first introduction to wavelets and wavelet theory. Includes 13 entry sampler bibliography that shows the wide extent of wavelet aps.

FIG. 3-WAVELET TUTORIALS AND SHAREWARE available on GEnie PSRT. You can call (800) 638-9636 for your voice-connect info.
be unbearable.
At any rate, you'll still want to get the best first-stage noise figure you can. But it might not help you out too much if your external noise is much stronger than KTB. On the other hand, a slight increase in antenna gain can make a dramatic improvement in your FM reception.

That happens because of a limiter's capture effect. For instance, if you've got a noisy FM signal, an increase of only two decibels in antenna gain or S / N ratio can make up to a seven or eight decibel improvement in receiver quieting.
I've found several interesting FM antennas. The Radio Shack 15-1636 is cheap at $\$ 17$ and easy to find. And it does a good job in near-fringe areas. But it is just plain too small. It measures only four feet by five feet, while a no-compromise Yagi solution will measure five by thirteen.

Radio Shack used the broadband co-linear array, rather than a Yagi
design. Then, to save on the materials and size, they apparently designed it up at 120 megahertz or so and hoped there was still some gain down in the FM band. Almost always, a broadband antenna has lower gain than one cut for a single station. From their point of view, this is a useful engineering mix that gives you a small and cheap solution which meets the needs of a majority of their customers. Their gain is 6.4 dB over a dipole.
The most rugged "real" FM DX antenna is the Cushcraft Y-FM5. This is available by way of Anixter. the leading cable TV distributor chain. The gain is 9.5 decibels over a dipole, and the cost is around $\$ 70$. Size is 59 by 104 inches.

Another interesting antenna is the ChannelMaster 4408 with a 9 decibel gain in a 138 -inch boom length. The price seems high at \$104.
The highest-gain stock antenna I

While watching rental movies, you will notice annoying periodic color darkening, color shift, unwanted lines flashing or jagged edges. This is caused by the copy protection jamming signals embedded in the video tape, such as Macrovision copy protection. THE DIGITAL VIDEO STABI LIZER: FXII COMPLETELY ELIMINATES ALL COPY PROTECTIONS AND JAMMING SIGNALS AND GRINGS YOU CRYSTAL
CLEAR PICTURES.
WARNING
THE DIGITAL VIDEO STA. BIIZERISINTENDEDFOR PRIVATE HOME USE ONLY. IT IS NOT INTENDED TO COPY RENTAL MOVIES OR COPYRIGHTED VIDEO TAPES THAT MAY CONSTIUTE COPYRIGHT IN FRINGEMENT.

FEATURES

- Easy to use and a snap to install
- State-of-the-art Microchip technology
- 100\% automatic
- Compatible to all types of VCRs and IVs
- The best and most exciting Video Stabilizer in the market
- Light weight (8 ounces) and compact ($1 \times 3.5 \times 5^{-1}$
- Uses a standard 9 Volt battery (last 1 2 years)
- Fast UPS delivery
- Air shipping available
- UNCONDITIONAL 30 day money back guarantee
- 1 year warranty
(Dealers Weicome)
FREE 20P Catalog

To Order: $\$ 59.95$ ea $+\$ 4$ for p \& h
Visa, M/C, COD Mon-Fri: 9-6 EST
1-800-445-9285
ZENTEK CORP. DEPT. CRE12
3670-12 WEST OCEANSIDE RD. OCEANSIDE, NY 11572
CIRCLE 195 ON FREE INFORMATION CARD

BEST Super Tri-Bi Autol
Var. Gain Adjustment $\$ 119.95 .585$ Jerroid Super Tri-Bi - \$109.95. $\$ 79$ Scientific Atlanta -- $\$ 109$ - $\$ 79$ Ploneer $\quad \$ 109$ - $\$ 79$ Panasonic TZPC145- 599.95 _ $\$ 79$ Sargate Corverter_ 595 \$69 Digital Video Stabilizer. $\$ 59.95$. $\$ 29$ Wireless Video Sender. $\$ 59.95$ _ $\$ 49.95$

30 Day Money Back Guarantee FREE 20 page Catalog
Visa, M/C, COD or send money order to: U.S. Cable TV Inc. Dept. KRE12 4100 N. Powerline Rd., Bldg, F.4 Pompano Beach, FL 33073

1-800-772-6244

For Our Record
I, the underigned, do bereby declare under penalty of perjury that all products purchased, now and in the future, will only be used on Cable TV systems with proper authorization from local otticials or cable company officials in accordance with all STATE LAWS PROVIDE FOR SURSTANT ANO VARIOUS AND CIVL PENAITIES FOR UNAUTHORIZED USE

Date:
US Cable'll Beat Anyone's Price Advertised in this Magazine! E 95

Signed:

No Florida Sales!

Educational Systems

Electronics \& Computer Software

 Education Catalog-Fast-Track Individual Learning Programs -State-of-the-Art Classroom Courses -The Best Values in Electronics Education Today

New

Computer Aided Instruction DC Electronics AC Electronics Semiconductors Electronic Circuits
The stunning animations, hypertext glossary, and easy-to-understand text make learning the concepts of electronics a breeze... and fun!
Learn Electronics the easy and aftordable way trom the Masters in Electronics Training - Heathki Educational Systems. From Basic Electricity and Electronics to Advanced Microprocessor Applications and much more, Heathkit will provide you will an unparalleled learning experience at a traction of the cost of other programs.

For your FREE Catalog, call
Toll-Free 1-800-44-HEATH
please mention this code when calling 020-004
CIRCLE 86 ON FREE INFORMATION CARD

NAVICUBE RESOURCES

Analog Devices

PO Box 9106
Norwood, MA 02062
(617) 329-4700

CIRCLE 334 ON FREE INFORMATION CARD

AST Servo

115 Main Road, Box 97
Montville, NJ 07045
(201) 335-1007

CIRCLE 335 ON FREE INFORMATION CARD

FW Bell

6120 Hanging Moss Road
Orlando, FL 32807
(407) 678-6900

CIRCLE 336 ON FREE INFORMATION CARD

Dinsmore Instruments

1814 Remell Street
Flint, MI 48503
(313) 744-1330

CIRCLE 337 ON FREE INFORMATION CARD

Fair Radio

PO Box 1105
Lima, OH 45802
(419) 227-6573

CIRCLE 338 ON FREE INFORMATION CARD

GPS World

PO Box 10460
Eugene, OR 97440
(503) 343-1200

CIRCLE 339 ON FREE INFORMATION CARD

Hewlett-Packard

PO Box 10301
Palo Alto, CA 94303
(415) 857-1501

CIRCLE 340 ON FREE INFORMATION CARD

Humphrey

9212 Balboa Avenue
San Diego, CA 92123
(619) $565-6631$

CIRCLE 341 ON FREE INFORMATION CARD

IC Sensors

1701 McCarthy Blvd
Milpitas, CA 95035
(408) 432-1800

CIRCLE 342 ON FREE INFORMATION CARD

IEEE Press

445 Hoes Lane
Piscataway, NJ 08855
(908) 981-0060

CIRCLE 343 ON FREE INFORMATION CARD
Journal of Navigation
1800 Diagonal St Ste 480
Alexandria, VA 22314
(703) 683-7101

CIRCLE 344 ON FREE INFORMATION CARD
KVH Instruments
110 Enterprise Center
Middletown, RI 02840
(401) 847-3327

CIRCLE 345 ON FREE INFORMATION CARD

M\&C

2994 W Liberty Avenue
Pittsburgh, PA 15216
(412) 343-9666

CIRCLE 346 ON FREE INFORMATION CARD

MicroSwitch

11 W Spring Street
Freeport, IL 61032
(815) 235-6600

CIRCLE 347 ON FREE INFORMATION CARD

Microwaves \& RF

611 Rt \#46 West
Hasbrouck Heights, NJ 07604
(201) 393-6286

CIRCLE 348 ON FREE INFORMATION CARD

Murata

2200 Lake Park Drive
Smyrna, GA 30080
(800) 831-9172

CIRCLE 349 ON FREE INFORMATION CARD
have found is the Winegard CA-6065; it has a whopping 10.6 decibels of gain on a 127 -inch boom and costs around $\$ 78$. This appears to be the best choice.

Be sure to remember that raising your antenna height is usually the best way to improve the signal-tonoise ratio in typical locations. The closer to line of sight you can get, the better the results.
But I live in a pecan grove. Nuts. My trees glop over everything, most especially antennás. So some indoor solution seemed better for me.

What about building your own sin-gle-station FM antenna? In theory, you could pick up another decibel or two of S / N and as much as $8-10 \mathrm{~dB}$ of quieting over full-band commercial designs. Especially if you are extra careful in tuning and matching. And if you have a high loft in your living room or a wire- and metal-free attic crawl space, an indoor design can be much cheaper than a mastmounted outdoor one-with fewer hassles. And a Yagi is just a bunch of free-floating conductors sitting in magic positions; a wood frame and

NASA Tech Briefs
41 E 42nd Street Ste 921
New York, NY 10017
(212) 490-3999

CIRCLE 350 ON FREE INFORMATION CARD
Nova Sensor
1055 Mission Court
Fremont, CA 94539
(415) 490-9100

CIRCLE 351 ON FREE INFORMATION CARD
Radio Research Instruments
584 North Main Street
Waterbury, CT 06704
(203) 753-5840

CIRCLE 352 ON FREE INFORMATION CARD
Rockwell
PO Box 568842
Dallas, TX 75356
(214) 996-5863

CIRCLE 353 ON FREE INFORMATION CARD

Sensors

174 Concord Street
Peterborough, NH 03458
(603) 924-9631

CIRCLE 354 ON FREE INFORMATION CARD

SenSym

1255 Reamwood Avenue
Sunnyvale, CA 94089
(408) 744-1500

CIRCLE 355 ON FREE INFORMATION CARD

SPIE

PO Box 10
Bellingham, WA 98227
(206) 676-3290

CIRCLE 356 ON FREE INFORMATION CARD
Systron Donner
2700 Systron Drive
Concord, CA 94518
(800) 227-1625

CIRCLE 357 ON FREE INFORMATION CARD
grommeted screw eyes can be used for support.

First, note that there are two styles of driver elements to a Yagi antenna. As Fig. 4 shows, if you use a half-wavelength dipole hairpin loop, the terminal impedance should end up near a balanced 300 ohms.

If you use a pair of straight wires of half-wavelength total spacing. then your terminal impedance should be a balanced 75 ohms. Note that normal 75 -ohm coaxial cable is unbalanced; you will need a
balin or a 1:1 transformer to go from balanced to unbalanced.

Note that driver impedances inside an antenna array usually end up lower than those values. They also must be carefully matched for best results.

The bottom line: use a hairpin loop for 300 ohms balanced or the pair of quarter-wave wires when you want 75 ohms balanced. Either way. a final matching will still be needed.
A six-element narrowband Yagi cut for 100 megahertz is shown in Fig. 5. Use quite thin but rigid conductors for the best narrowband gain. Something like bare 12 AWG solid copper house wire might be a good choice. To cut the antenna to your desired station, divide the frequency in megahertz by 100, and then divide all sizes by the resultant number. For instance, to pick up KDKB at 93.3 MHz , all element lengths and all spacings will get divided by 0.933 . Note the inverse relationship: stations under 100 MHz need slightly larger antenna designs.

The directors should point towards your chosen station. Use a map for starters, and then try rotating a tad either way. Your beamwidth should be around thirty degrees, so pointing in just the right direction is super important.
Additional directors can, in theory be added, in a size progression. But all you gain is something like half a decibel per director, and the size does get out of hand real quick. And a careful match, or finding a local hot spot, or a tad extra height can often get you much more signal.
The theory behind a Yagi antenna? The optimum spacing is usually 0.2 wavelengths. The driver should be half a wavelength wide. The reflector should be around five percent longer, while the initial director should be five percent shorter. The rest of the directors should be progressively six, seven and, eight... percent shorter.

More on Yagi antennas appears in two ARRL publications, the Antenna Handbook and Yagi Antenna Design. Also see NBS technical note No. 688.

Close matching of an antenna to its transmission line is essential for the best gain. The simplest method

No costly school. No commuting to class. The Original Home-Study course prepares you for the "FCC Commercial Radiotelephone License." This valuablelicense is your professional "ticket" to thousands of exciting jobs in Communications, RadioTV, Microwave, Maritime, Radar, Avionics and more...even start your own business! You don't need a college degree to qualify, but you do need an FCC License.
No Need to Quit Your Job or Go To School This proven course is easy, fast and low cost! GUARANTEED PASS-You get your FCC License or money refunded. Send for FREE facts now. MAIL COUPON TODAY!

COMmAND PRODUCTIONS

FCC LICENSE TRAINING, Dept. 90
P.O. Box 2824, San Francisco, CA 94126 Please rush FREE details immediately!
NAME
ADDRESS
CITY
SUPER 12 HOUR RECORDER CALL TOLL FREE

Modified Panasonic Slimline, 6 hrs per side 120 TDK tape furnished. AC/DC Operation. Quality Playback. Digital Counter. Durable Lightweight Plastic.
$\$ 119.00^{*}$

PHONE RECORDING ADAPTER

Starts \& Stops Recorder Automatically When Hand Set is Used. Solid State!
FCC Approved
$\$ 28.50^{*}$
VOX VOICE ACTIVATED CONTROL
Solidstate Adjustable
Sensitivity. Voices \&
Sounds Activate Recorder
Adjustable Sensitivity
Provisions for Remote
Mike
\$28.50*

* Add for ship. \& handling. Phone Adapter \& Vox $\$ 2.00$ each, Recorders $\$ 5.00$ each. Colo. Res add tax. Mail Order, VISA, M/C, COD's OK. Money Back Guar. Qty Disc. available. Dealer inquiries invited. Free data on other products.

AMC SALES INC. 193 Vaquero Dr. Boulder, CO. 80303
Phones (303) 499-5405 1-800-926-2488 FAX (303) 494-4924
Mon-Fri 8-5 MTN. TIME

(A) An ordinary dipole has an impedance of a balanced 75 ohms resistive just below its resonance. But any thick conductors or nearby elements lower this resistance or add some unwanted series reactance.

(B) Folding a dipole into a hairpin loop will raise its input impedance by four times. The impedance just below half of a wavelength is a balanced 300 ohms resistive. Careful tuning is needed in the real world.

FIG. 4-FOLDING A DIPOLE can raise its resonant impedance by a factor of four.

All dimensions are shown in decimal inches. The antenna is shown top view, and assumes the station is horizontally polarized.

To cut your antenna for a specific station, divide the station frequency by 100 and then divide all sizes shown below by the same value.

For instance, a 93.3 Mhz station needs all the values divided by 0.933 . A 104.5 Mhz station needs all of the values divided by 1.045 .

FIG. 5-AN INDOOR SINGLE-STATION long-distance FM antenna can be built using nothing but bare 12 AWG house wire. Here is one possible design. Note that the antenna size should be "cut" for your favorite station. Values shown assume an insulated boom or other supports. All elements must be very straight, rigid, parallel, and precisely centered. Contact a local radio ham for help in matching.
is called a gamma match, and it is done by just spreading the ends of a 300 -ohm twinlead to tap maximum
signal strength. Better methods appear in the books mentioned.
It would be real interesting to
route both of your dipole rods straight into a VHF differential amplifier. Such an antennafier can greatly simplify tuning and matching. But a lot of black magic could be involved, so be sure to experiment.

Let me know all your experiences with any homemade ultra-range FM antenna designs. I'll try to publish the best of them.

New tech lit

A green 1991 Product Handbook from MX-Comm. This little-known semiconductor house offers all sorts of exciting hacker chips, especially those involved with tone signalling, speech scrambling, cellular phones, and pagers. One real sleeper: MX-Comm's MX009 octal digital gain-controlled amplifier array. Lots of application-notes are also included.

Free engineering samples of its new 41VHS-1 humidity sensor have been offered on professional request from Victory Engineering.

Heartland America is yet another Distressed Yuppy Surplus directmail outfit. It has all varieties of hightech goodies. Its latest new catalog does offer the first laser pointers that I have seen selling for less than $\$ 100$.

RePlay and Play Meter are the two leading trade journals for the coin-operated video-game industry. While they mostly concentrate on the buying and selling of games and supply products, there are occasional technical articles plus repair books and videos.

If you are interested in starting up your own tech venture, be certain to check into my at long last available Incredible Secret Money Machine II. We have also begun shipping the latest Hardware Hacker III reprints with their newest updates. See my nearby Synergetics ad for more details.

A reminder here that lots of great technical downloads are available on GEnie PSRT.

As usual, we've gathered many of the resources mentioned together into either the Names \& Numbers or the Navicube Resources sidebars. Do be sure to check these out before you use our no-charge tech helpline or call for a free hacker secrets brochure.

GLITTER GLOBE
continued from page 40

FIG. $10-$ BOTH SIDES OF THE CONTROL BOARD are shown with only level 1 attached (top and middie), and levels 1-4 have been added in the bottom photo.

After testing the controller board, assemble the five boards of the first level. (A " 1 " is etched on each of them.) Assemble the level-1 boards into a ring shape using resistors R14-R18, which should already be bent to the proper length- $1 / 2$ or $3 / 4$ inches (see Fig. 7). Creating the top ring in that manner will set the proper spacing for the rest of the globe. Leave the top hole on each level-1 board open (the hole
farthest from the number etched on the inside surface), for connecting level 1 to the globe's control board.

Figure 7 is a "component map," showing levels $1-4$, and how they connect together. All connections marked " J " are zero-ohm jumpers; all connections showing a resistor symbol must be 680 ohms, and all unmarked connections are structural components and can be
made from anything you like (the kit includes additional $680-\mathrm{ohm}$ resistors for use in these locations). Connect the level-1 ring to the control board as shown in Fig. 8; if you are using $3 / 4$-inch spacing, level 1 mounts as shown in Fig. 8-a; for $1 / 2$-inch spacing, level 1 mounts as shown in Fig. 8-b. To connect level 1, install five 1 inch leads rising vertically from the control board. Then bend them to fit the level-1 ring as shown in Fig. 8.

Next add the level-2 boards. Each level-2 board connects to level 1 with one resistor (R19-R23) and one zero-ohm jumper. Solder the resistor and jumper to each level-2 board first, and then attach them to level 1 . While building the globe, you'll begin to notice patterns. For example, after level 2 is complete each new board (except for level 7) connects to the previous level with two resistors (one structural only), and one zeroohm jumper.
Figure 9 shows the rest of the globe (levels 5-7). Note that Figs. 7 and 9 both show the outside surface of the globe. The letters surrounding each half of the globe in Figs. 7 and 9 indicate the connections between the two halves. Install each level in order from 1 to 7 (even though we have shown the globe in two halves).

Layer 2 is composed of fivepoint boards, so, to make a sphere, keep the lead spacing of the resistors and jumpers attached to all layer-2 boards at $5 / 8$ inch. It's a good idea to plug in the globe after each layer is installed to make sure all LED's are working. It's best to repair errors early before they become difficult to correct. Continue adding each layer and testing the globe until it's finished. Figure 10 shows a globe in different stages of construction.

When complete, the Glitter Globe forms a surprisingly sturdy structure, and you can hold it while it's operating. If the globe is dropped or crushed, it is a simple matter to bend it back into shape. With reasonable care, it will last for decades to come.

Yonlr

Holiday

Holiday SPIRIT is your complete headquarters for surviving the holidays! Whether you need tips on the latest technology in sound systems, televisions or video games, Holiday Spirit will provide the latest information on electronic technology that will be just in time for

the holiday season.
Hosted by Spencer Christian, American's favorite weatherman, Holiday Spirit is a series of three, one hour television specials that guide Americans through their favorite holidays: Thanksgiving, ChristmasHanukkah and New Year's.

Innovative electronic technologies are thriving in the 90's. An array of new technologies are unveiled every holiday season, increasing consumer confusion on how to choose the latest electronic gifts.

Holiday Spirit will look at the latest gifts; including Metrosound's Malibu 100 Car

Audio Amplifier for your older teenagers and Royal Appliance's Dirt Devil for mom. For those looking for high fidelity, Holiday Spirit will profile the Bose Lifestyle Music System for listening to Christmas carols and will showcase Hitachi's Ultravision Big Screen Televi-

sion for watching the New Year's bowl games like never before.

Holiday Spirit has valuable tips and information for everyone. For the youngsters in the family, Sunsoft's Road Runner's Death Valley Ralley will be the latest Nintendo game to fill their stockings. For music lovers who

demand accurate and natural music reproduction, Holiday Spirit will feature Ohm Walsh 5 Loud Speakers for full room stereo sound.

Need a gift for the handyman or professional tradesman? Snap-On Tools Racheting Screwdrivers are fast, easy to use, and are economically sound. Travel-

ing? Holiday Inn will give you a comfortable, affordable place to stay with the family.

Last year, you thought you had enough time to shop, you thought you bought the right brands, you thought you called every relative. This year, if you think you can't get everything

finished in time, Holiday Spirit will show you how to have "Happy Holidays" with time-

saving tips and gift recommendations.

Check your local TV guide for times and dates.

DRAWING BOARI

Let's get back to our SSAVI descrambler.

ROBERT GROSSBLATT

Before we get into the nitty gritty of the SSAVI system, I have to take a few lines to make a few things clear. I've touched on them before, but it's important to repeat them. All we've gone into so far is gated sync suppression, which can be considered pretty unsophisticated these days.

The SSAVI system isn't the last word in scrambling but it's reasonably recent and it, or some variation of it, will be the scrambling system of choice for some time to come. That is true even if you consider only the economic side of changing scrambling methods.

I have no doubt that many cable companies use this scrambling technique, or at least something very similar. If that's true in your area, it would be a good idea to do some experimenting with the actual signal-hands-on experience is always the best. What you'll probably find out in the real world is that the system used in your area isn't an exact match for the one we'll be taking apart. The general principles might be the same, but the particular details will undoubtedly vary.

When the SSAVI system first started, there were some constants in the video signal that could be used to descramble it. Remember that the picture can be messed up in any one of three ways (see October's column for the details), and the instructions for the descrambler are transmitted somewhere in the vertical interval. The word "somewhere" is a late addition to the SSAVI system. When it first started, the descrambling information was always on the same line. That's where we'll start.

Once upon a time, the sanctity of the vertical interval was closely guarded by the FCC, but as alternatives to standard broadcast TV
became more popular (cable, satellite, etc), more and more junk started to show up there.

When the SSAVI system started, lines 0 to 9 were left alone by a request of the FCC, but lines 10 to 13 were where the cable companies transmitted individual subscriber codes. Don't forget that there are unique ID numbers stored in an EPROM (or some other kind of memory) in the cable box. There's also logic circuits there to count the video lines, read the transmitted code, and match it up against the one stored in the box. This is a big thing for the cable companies because it prevents a New York box from being used in California. The scrambling is the same, but the codes are completely different.

The decoder circuitry is also controlled by this coding process because a match between the
transmitted bytes and the ones stored in the box will enable or disable the decoder. That is true for both the premium cable services and the pay-per-view events.
That kind of coding might be important to the cable companies, but it doesn't mean anything to us. We can build an experimental descrambler without paying any attention to them.

Since the video can be transmitted with either normal or inverted picture information, one of the tasks that has to be done by the descrambler is to tell the rest of the circuit what has been done to the picture. The place to find that information was originally in line 20, but it has been moved around since the system became popular. As you can see in Fig. 1, the last half of the line will tell you whether the picture is normal or inverted. Remember that

FIG. 1-THE LAST HALF OF THE LINE OF VIDEO will tell you whether the picture is normal or inverted. We're talking about the picture part of the line only.
we're talking about the picture part of the line only, and not the control section.

If the following field is normal, the last half of the line will be black, and if the picture is normal, the whole line is white. One of the things a decoder needs, therefore, is some way to detect the line and store the data it contains. The stored data is then used as a switch by the circuit to route the video through an inverter if the picture is being transmitted upside down.

This is pretty straightforward stuff. Since we're looking at only one piece of information, all we need is a place to store one bit of information. Your basic piece of cake. The circuitry needed to detect the data, however, is a bit more complex. We need a reference in the signal. So establish a zero point for a line counter, and some counting circuitry to keep track of which line is being received.

You might be wondering what we can count if the signal is being scrambled. But remember, that in the vertical interval (the first 26 lines of video), the signal is being sent in the clear.

Now that we have an approach to handling the possibility of an inverted picture, the last problem to tackle is the one of varying horizontal sync pulses. Sometimes they're there. sometimes they're absent, and sometimes they're not at the proper level. Anything that unstable is a pretty poor choice for a reference signal. So, to avoid a mammoth circuit design problem, the best way to deal with it is to scrap the transmitted horizontal sync (even when it's there), and come up with a way to generate the signal ourselves.
That can also seem to be an insurmountable problem but, just as in the case of the inverted picture, the answer is going to be found in the vertical interval. Once again, remember that the first 26 lines of video are sent in the clear and, even during the rest of the video frame, (no matter what's going on with the picture), the horizontal sync pulse is never inverted. It might be weak or missing entirely, but it's never upside down. That's important to keep in mind because if we generate our own horizontal sync, we don't want

FIG. 2-THIS CIRCUIT WILL MAKE SURE the picture is always present at the output in a non-inverted state, and that it has horizontal sync pulses present at the right level and the right position.
an upside down, positive-going sync signal present. If that was the case, the two sync signals would add together and cancel, which is not a good thing.

We've talked about how to regenerate sync when the signal being received is unreliable. If you don't remember it or haven't read it, go back to October's column and review it. Basically, the approach is to take the horizontal pulses sent in the clear during the vertical interval and use them as the reference for a phase-locked loop that will supply the missing pulses during the rest of the video frame. If you've got twenty or so reliable pulses per frame, you can accurately generate the missing two hundred and forty or so for the rest of the frame.
The block diagram of the circuit we need is shown in Fig. 2. In a nutshell, the job of the circuit is to make sure the picture is always present at the output in a non-inverted state, and that it has horizontal sync pulses present at the right level and the right position.
The scrambled video is fed to an op-amp and the output is sent to a sync separator-the same basic circuit that's found in every TV set in the universe. The sync pulses drive a phase-locked loop whose output is decoded to provide the missing sync pulses for the video lines outside the vertical interval (where most of the interesting stuff is found). These generated sync pulses are mixed with the incoming
video and then sent, through a gated inverter, to the back of your TV set.

The gated inverter is controlled by a signal that tells it whether or not the picture portion of the video is upside down. The control signal is derived by watching the state of line 20, as we discussed before.

All this sounds incredibly complicated but, if you look over the block diagram, you'll see that it's just a collection of gates and countersthe same sort of stuff we've been messing around with for years.
The only box in the diagram I haven't explained is the reset circuit for the counter. I'll explain that in the next column but you should be able to figure out for yourself exactly what it is. If you get it right, you've got a good handle on the subject of video in general and scrambling in particular. If you can't figure it out, spend the next month getting ready by boning up on the essentials of basic video theory.

cay
 PROFESSMONAL Books only

when you join the ELECTRONICS ENCINEERS' BOOK CLUB ${ }^{\text {sw }}$

3258
$\$ 28.953991$
$\$ 39.95$ 9255-XXX
$\$ 105.00 \quad 003961$
$\$ 39.95 \quad 3438$
$\$ 39.95$
This book offers up-to-date Engineers and technicians will "Outstanding, extensive refer- Here's your guide to basic elec- Promotes true understanding by instructions for troubleshooting find full coverage of standard ence to current technology of and repairing all major brands of power supply sources. Covers electronics. Covers everything equipment, with hundreds of new frequency devices including from principles to applications." diagrams, spees, and schematics. insulated-gate bipolar transistor Covers TVs, VCRs, CD play- (IGBT), mos-controlled thyristor ers, and much more. 310 pp . (MCT). 464 pp., 365 illus.
-Computer Book Review 2.528 pp ., 1,800 illus. Counts as 3
trical measurements, component measurements, system tests, and performance verification. Most of the methods and procedures you'll find here use available off-the-shelf test equipment. 224 pp., 180 illus.

Promotes true understanding by
explaining how and why mathematics principles work. Step-by-step instructions and alternative techniques are provided for solving problems in basic arithmetic, algebra.

3138-XX ALANT "Circuit Book" of over 700 of the most widelyused, state-of-the-art electronic and integrated circuits ever compiled in a single source! The perfect sourcebook for all levels of electronics practitioners. 738 pp . Counts as 2

$\$ 38.95 \quad$ 3203-XX
$\$ 46.95 \quad$ 1938-XX
rovides a ready source of basic This reference offers you cominformation on using program- prehensive discussion of theory mable controllers to achieve a and application of solder pastes wide variety of manufacturing with particular emphasis on how goals. You'll find flowcharts and they affect the electronics step-by-step explanations to industry. Covers metallurgy, develop, improve, and monitor rheology, fine particle measureprocess control. 304 pp., 187 illus. Counts as 2 illus., 4 pp. color Counts as 2

heology, fine particle measureillus., 4 pp. color Counts as 2 scope, and design. 768 pp. Counts as 2

$\$ 26.95 \quad 3710$
$\$ 104.50 \quad 3540$

020975-XXX

This guide brings you up-to-date electrical engineers. Completely revised and updated, his chosic su components, use and repair components in RF handbook covers the generation, and measurement procedures. circuits, and principles of radio transmission, distribution, con- Covers switching rates up to signal propagation from low fretrol, conservation, and applica- $3-\mathrm{MHz}$ and higher as well as the tion of electrical power. 2,416 pp., 1,388 illus., 430 tables. Counts as 3

$\$ 32.95 \quad 025354$ geometry, trigonometry, and calculus. 512 pp., 481 illus.
$\$ 60.00 \quad 2672$
$\$ 49.50$ For quick-reference and on-the- This "one-stop" sourcebook job use, this sourcebook puts bridges the gap between data over 1,300 state-of-the-art books and the designer's search designs at your fingertips. From for the right component. Covers A (alarm circuits) to Z (zero how linear ICs are fabricated, crossing detector circuits) this how they work, what types are compendium excels in content, available, and techniques for

Electronics
Math

$\$ 29.95 \quad 3589$
$\$ 27.95$ Understand the latest data com- A practical toolbox reference for munciations software systems anyone in the electronics field. and how they interface with the Phagan guides you through the hardware. This hands-on guide practical calculations needed to emphasizes the practical side of design and troubleshoot circuits the field while keeping and components. mathematical theory to a 352 pp., 270 illus. minimum. 192 pp., 30 illus.

053570-XX
$\$ 64.95$ 022764-XX
This is a "one-stop" guide to the theory and design of communications receivers: shortwave, broadcast, radar, military, broadcast (AM-FM), radar aeronautical, marine, and directions finding. 608 pp., 402 illus. Counts as 2

3279
Perform routine maintenance and diagnose and repair any kind of computerized device. This popular reference covers large dynamic RAMs, 32 -Bit processors, 80286, 80386, and Z8001-Z8002 processors. 570 pp.

037504

$\$ 17.95049530$
Packed with information for This complete EPROM instruc-
solving on-the-job design, opera- tion manual provides a detailed tion, and analysis problems. This explanation of underlying is the most complete collection engineering facts, figures, techniques, and methods, jech- jects, including programmers assembled into a single source. circuits. 240 pp . Softcover
1,072 pp., 400 illus. Counts as 2

\$39.95 585261-XX

$\$ 52.00$ 3365P
$\$ 24.95 \quad 9290-\mathrm{XX}$

65P free with this organized transformer, and magnetics approach to power systems design. Provides worked-out analysis. You'll apply theoretical examples of transformers, curconcepts to the solution of every- rents, power levels, and more. day power systems problems 550 pp., 250 illus. Counts as 2 with the help of this book.
288 pp., 150 illus.

Packed with simplified, circuit- Get clear, straightforward by-circuit troubleshooting examples, this handbook provides the practical know-how you need to operate and troubleshoot modern RF equipment. 352 pp., 150 illus.
coverage of all principles underlying the operation and analysis of state-of-the-art circuits-along with a lot of examples, problems, and illustrations. 434 pp., Illustrated Counts as 2

Both a professional reference This book provides the practical and a study guide for the aspir- approaches and innovative, easying technician, this is a well- to-perform troubleshooting illustrated introduction to techniques you need to pinpoint modern communications. Use it symptoms and effectively to prepare for your FCC General evaluate the cause of electronic Radiotelephone Operator Lic- malfunctions. 318 pp., Illus. ense or CET exam. 704 pp. Soffcover

Counts as 2

Couns as 2
$\$ 36.00$

\qquad

Your source for quality, affordable and timely authoritative engineering books.

As a member of the Electronics Engineers'

Book Club ${ }^{\text {sw }}$.

you'll enjoy receiving Club bulletins every 3-4 weeks containing exciting offers on the latest books in the field at savings of up to 50% off of regular publishers' prices. If you want the Main Selection do nothing and it will be shipped automatically. If you want another book, or no book at all, simply return the reply form to us by the date specified. You'll have at least 10 days to decide. And you'll be eligible for FREE books through the NEW Bonus Book Program. Your only obligation is to purchase 3 more books during the next 2 years, after which you may cancel your membership at any time.
-1992 EEBC
All books are hardcover unless otherwise noted. Publishers' prices shown. If you select a book that counts as 2 choices, write the book number in one box and XX in the next. If you select a Counts as 3 choice, write the book number in one box and XXX in the next 2 baxes.
A shipping/handling charge \& sales tax will be added to all orders.

> If card is missing, write to:

Electronics Engineers' Book Club, Blue Ridge Summit, PA 17294-0860

Electronics Engineers'

Blue Ridge Summit, PA 17294-0860
YES! Please rush me the books indicated below for just $\$ 9.95$ plus shipping/handling \& applicable sales tax. Enroll me as a member of the Electronics Engineers' Book Club according to the terms outlined in this ad. If not satisfied, I may return the books within 10 days without obligation and my membership will be cancelled. A shipping/handling charge and sales tax will be added to all orders.

If you select a book that counts as 2 choices, write the book number in one box and XX in the next. If you select a Counts as 3 choice, write the book number in one box and XXX in the next 2 boxes.

[^1]
AUDIO UPDATE

It's a matter of hear today, gone tomorrow

UAREY KDत्राN

It's an unhappy paradox that at a time when music reproduction is approaching perfection, there is widespread failure in the music listener's ability to hear it fully. Four years ago I wrote in this column about the audiometric hearing tests given by the Audio Engineering Society at their 1986 Los Angeles convention. The more-than-200 AES members tested showed small but consistent hearing losses that exceeded those expected from the normal aging process. A wide variation of hearing thresholds was measured in the sensitive 3 - to $6-\mathrm{kHz}$ range with more than 10% of the respondents showing significant hearing loss at 4 kHz .
It's a sure bet that things have not improved any in the last six or seven years. In fact, from what I hear, the quantity and level of ear-damaging environmental sounds have escalated beyond reason. Under environmental sounds, I include everything from power mowers and blowers to live and reproduced rock music. Can anything be done to tame the wild decibels?

English ears

For some reason, many of the extensive research studies on hearing loss and music listening have been done in the U.K. Several years ago, two researchers at the University of Keele tested two groups of Staffordshire high-school students; one group had frequent exposure to loud music at rock concerts, discos, and through personal stereo headphones. The control group (I wonder where they found them) had little or no such exposure.
Although conventional diagnostic tests revealed no overall hearing loss, two problems did become evident with more precise techniques. There was evidence of the group's diminished sensitivity to a narrow
band of mid frequencies and, surprisingly, a reduced ability to distinguish between adjacent musical pitches.

Environmentally engendered hearing loss is not limited to kids addicted to rock concerts, loud headphones, and killer car-stereo systems-all of which have been measured at noise levels over 110 dB . The older, if not wiser, generation is also surrounded by equipment that is not intentionally loud but just happens to be. I'm referring to a variety of home, yard, and recreational equipment. These include power tools (my radial-arm saw cutting through hardwood makes quite a racket!), power mowers, and leaf and snow blowers. Recreational vehicles such as outboard motor boats and snowmobiles, are also

MAXIMUM ALLOWABLE OSHA LEVELS

The Occupational Safety and Health Act (OSHA), which became law in late 1970, places limits on the noise conditions to which employers may subject their workers. The maximum allowable sound levels and daily exposure periods are given in the table. For industries that fall under the jurisdiction of the act, those limits have the force of law, and an employer is obliged to take corrective steps if it is found that any employee is being exposed to noise that exceeds the limit.

TABLE 1-MAXIMUM ALLOWABLE OSHA LEVELS

Exposure Maximum level duration level ($L_{\text {eq }}$ in dBA) (hours per day)

8	90
4	95
2	100
1	105
$1 / 2$	110

potent sources of the kind of sustained sound levels that can be particularly damaging.

In general, the rule seems to be that constant sound levels, particularly in a narrow band, are more harmful than louder intermittent sounds. In other words, if your sound-pressure level (SPL) meter needle seems stuck at the $90-\mathrm{dB}$ level, the sound is likely to be far more damaging than if the needle is swinging wildly with occasional 100 dB peaks.

Since the ear-damaging effects of noise result from cumulative exposure over time, noise-dosage meters have been developed for industrial use. They average out the varying sound-pressure level to provide an equivalent continuous sound level, or $L_{\text {eq }}$. Such devices are analogous to the radiation-dosage meters that are supposed to keep workers in the nuclear industries safe. Experience has shown that some hearing loss will occur in 20% to 25% of workers exposed to the legally allowed limit of 90 dB ($\mathrm{L}_{\text {eq }}$ in dBa) for 8 hours. That is the sound level of heavy street traffic or a subway train.

Damage report

Exactly how does hearing damage occur? Aside from eardrum rupture caused by a high-pressure pulse from a loud nearby sound, rapid pressure changes and diseases of the auditory nerve and central nervous pathways, the major area of damage occurs in the microscopic hair cells residing in the spi-ral-shaped cochlea of the inner ear. Dr. John Rosowski of Harvard Medical School has been investigating the problem. At relatively low levels of intensity, he says, damage appears to be proportional to the amount of energy entering the ear during a particular period of time.

But beyond some critical level of sound pressure, the hair cells become much more susceptible to trauma. With only a small increase in SPL beyond this critical point, the damage increases significantly and disproportionately.
The microscopic hair cells are the specific transducers that convert the vibrations in the inner ear to the electrical impulses sent to the brain. Each hair cell, which has a diameter about $1 / 8$ that of a hair, is topped off by 20 or so stereocilia that resemble the bristles on a toothbrush. Scanning electron micrographs of sound-damaged microcilia show them bent, fused, and even missing. That results in a medical diagnosis of "nerve deafness," an irreversible condition.

FIG. 1. LOSS OF HEARING is a natural result of aging (a), but a much more severe loss can result from long-term exposure to an excessively noisy environment (b). Both curves are at 4 kHz , but high-frequency hearing goes first.

In general, everyone who lives in a civilized (meaning noisy) environment is subject to some hearing loss over time. [See Fig. 1-a.] At first, the loss appears only in the upper frequencies usually reproduced by tweeters. In time, however, the loss progresses downward to the upper midrange frequencies that differentiate the sounds important to speech comprehension.

Now hear this

There is good evidence that individuals vary in their physical tolerance of loud sounds. Nevertheless, there are some ground rules that those who care about their hearing should follow. Since ear damage is cumulative, resulting in a gradual deterioration, sounds that are instantly heard as too loud-
that cause ringing or other inner ear noises-should be avoided or at least diminished by placing damp cotton wads in the ears or by the use of more effective medically-approved ear-protection devices. However, loud, but not obviously excessive, sound sources, musical or otherwise, can also be damaging in the long run.

I have an audiophile friend who wears earplugs in the subway and in
other noisy environments. Aside from the noise level in public places, you should consider ear protection when performing such activities as power-tool carpentry and lawn care. Even wads of cotton stuffed tightly in your ear canals will help. It's not just that you are saving yourself an immediate headache, but you might avoid a hearing-aid purchase 30 or 40 years from now. Don't be dumb today-and deaf tomorrow. R-E

DIGITAL MULTIMETER

DM-6335
 - Auto Range - Mernory - Data Hold - Diode Check - Continuity

December 1992, Electronics Now

ATTENTION ELECTRONGS TEGHIGLD EARN YOUR B. B. $_{\text {E. }}^{5}$ DEGREE

THROUGH HOME STUDY

Our New and Highly Effective Advanced-Placement Program for experienced Electronic Technicians grants credit for previous Schooling ahd Professional Experience, and can greatly reduce the time required to complete Program and reach graduation. No residence schooling required for qualified Electronic Technicians. Through this Special Program you can pull all of the loose ends of your electronics background together and earn your B.S.E.E. Degree. Upgrade your status and pay to the Engineering Level. Advance Rapidly! Many finish in 12 months or less. Students and graduates in all 50 States and throughout the World. Established Over 40 Years! Write for free Descriptive Literature.
COOK'S INSTITUTE OF ELECTRONICS ENGINEERING

JACKSON, MISSISSIPRI 39212
CIRCLE 58 ON FREE INFORMATION CARD

EOUIPMENT REPORTS

continued from page 16
(5000 counts) signals with crest factors up to 3.0 can be measured. At full scale, a signal must have a crest factor less than 1.5 to be measured accurately.

The HD160 offers impressive overload and safety protection. The voltage inputs can withstand up to 1000 volts AC or DC. Both current jacks are protected by fuses. An added safety feature protects the meter, user, and the device under test: When a probe is inserted in one of the current jacks and the function switch is set to a non-current mode, the meter's display will show an error message to warn the user.

The HD160 is priced at $\$ 199$. The capable, rugged high-quality meter will be appreciated by anyone who needs a DMM for serious professional use.

R-E

COMING NEXT MONTH

The January 1993 Issue goes on sale December 3, 1992

WORLD BAND SHORTWAVE RECEIVER Keep informed on world events and learn RF construction techniques!

BUILD THE RING THING Now you can have remote access to your PC even if the power is off!

BUILD A VOICE
 CHANGER

A project that's as fun to use as it is to build!

RESISTORS
A comprehensive guide.
AND LOTS MORE!

To prevent crime in Tucson, police use sensitive, highly sophisticated surveillance equipment: Tim, Rose, Gert, Anthony, Yvonne, and Ramon.

Citizen participation is critical to police effectiveness. Do you care about your neighborhood enough to help protect it?

The Case of the Tucson Tip-off.

In a particular neighborhood in Tucson, Arizona, folks were having a real problem with burglaries and break-ins.

Theystartedtalkingtoeach other about what they could do. They gotfedup. About 400 people went to the police for advice. They learned about surveillance. They got to know their beat officers. Citizens and policebecamepartners in crime prevention.
In just three weeks, 17 arrests were made and burglaries went down 30\%. And Tucson is only one case where people successfully worked to beat crime. To find out more, write: The McGruff Files, 1 Prevention Way, Washington, D.C. 20539-0001.

You can make a difference.
You can help...

Amessage from the Crime Prevention Coalition, the U.S. Department of Justice and the Advertising Council. © 1989 National Crime Prevention Council

CIMPDTHR CONN:HTIONS

Computers and Consumer Electronics

JBFF HOLTAMAN

computers and consumer electronics are merging. Kodak and Tandy have added fuel to the fire with their recent introductions of Photo-CD and the Visual Information System (VIS), respectively. Photo-CD and VIS join CD-ROM Interactive (CD-I) and Commodore Dynamic Total Vision (CDTV) as the major attempts to put computer-like interactivity on a television screen, thereby capturing the hearts and minds-and pocket-books-of noncomputerized consumers. VIS, CDTV, and CD-I are direct competitors; although similar in some ways, Photo-CD is really in a category by itself. (You might also want to keep in mind upcoming CD. based systems from Nintendo and Sega.) Photo-CD, CD-I, CDTV, and VIS all share the following in common:

- They are meant to be operated in
the family room, not in a home office or corner of the bedroom.
- They use the home entertainment system (TV and stereo) for audio and video output.
- They emphasize early education. games, entertainment, and reference works.
- They use some form of CD-ROM as the primary delivery medium.
- They operate with simple infrared remote-control devices rather than computer keyboards.
- They are meant to appeal to less technically sophisticated consumers than computer users.
- They cost in the \$600-1000 range.
To understand what each of these technologies has to offer and which is likely to be successful, let's summarize the key points of each.

CDTV This system descends from a long-time player in the per-

FIG. 1-KODAK'S PHOTO-CD puts 100 images in five different resolutions on a single CD-ROM disc. The player displays images on your TV screen and plays regular audio CD's through your stereo. A future upgrade will allow you to add audio and text to a Photo-CD disc, thereby allowing annotated, navigable slide shows.
sonal-computer market. Starting way back with the Pet (in the late 1970's), and moving on through the C-64, and then to the Amiga, Commodore has always had a presence in personal computing. However, the company has never developed and executed a clear marketing strategy, hence has been a sideline player in most areas. The single exception is video production on the Amiga, where word of mouth and an unbeatable price/performance ratio have brought success. CDTV was introduced in the early summer of 1991, and has yet to achieve major acceptance. CDTV consists of a stripped-down Amiga 500 computer that has been specially modified to respond to commands from an infrared remote. The unit can be expanded to be a functional Amiga 500 by adding keyboard, disk drive, memory, and mouse. CDTV is sold by Commodore dealers.

CD-I Philips Consumer Electronics introduced the CD-I system in the fall of 1991 after several delays. It consists of a proprietary 68000 -based system running a special version of the OS-9 operating systems. CD-I players are sold by consumer-electronics outlets. Approximately 65 CD-I titles are available, including several "celebrity" titles narrated by Danny Glover, Mia Farrow, Robin Williams, Jack Nicholson, Raul Julia, and Sir John Gielgud. One CD-I disc explores jazz giants such as Charlie Parker, Miles Davis, and Sarah Vaughn. Another disc explores the paintings of Rembrandt, and includes narration in seven languages (Dutch, English, French, German, Italian, Japanese, and Spanish). Titles start at $\$ 15$; most are priced in the $\$ 20$ to 40 range.

VIS Like Commodore, Tandy has been involved with personal com-
puters since the earliest days. Its chief products include the TRS-80 series, the Color Computer, the Model 100/200 portables, a line of semicompatible PC's, and a line of fully compatible PC's. While never achieving great success in the business community, the PC compatibles have, nonetheless, held their own in the hobbyist/consumer market. VIS, is in fact, the "Wintendo" device discussed here in the October issue that has fueled the industry rumor mill for months. Unlike the other products discussed here, VIS software architecture is based on MS-DOS and Modular Windows, a ROM version of Microsoft's Windows optimized for use in a consumer (television) environment. Virtually all leading content developers, including Berlitz/Cruise Watch, Broderbund, Compton's New Media, Electronic Arts, Lucas Arts, Sierra, and others, are developing VIS titles; AimTech (IconAuthor) and OWL (Guide) have authoring systems, and Microsoft might have something up its sleeve in that area as well.
The DOS/Windows platform is good for several reasons. Content developers don't have to buy specialized and costly development platforms; standard PC's (with emulation boards) will do the trick. Porting VIS titles to and from other systems (e.g., MPC-compatible PC's) will be simpler than porting to or from a whole new architecture. Tandy's immense retail network ensures broad product availability and servicing. Zenith will also be selling VIS systems under its own brand name.
Photo-CD Kodak's technology is not currently designed to compete in the interactive-TV market, although it does have architectural features that might eventually provide interactivity. Photo-CD is designed to appeal to both professional and broad consumer bases. In the consumer world, Kodak hopes Pho-to-CD will supplement the family photo album and slide projector. In a professional setting, it will be useful for desktop publishing, corporate image databases, stock photo image bases, medical imaging, image archiving, and probably lots more. Photo-CD works like this: You take
or mail a standard roll of print or slide film (up to 4×5 inches now, with larger formats coming) to a special Photo-CD processor, which then scans each image at five resolutions ranging from catalog-quality "thumbnails" (128 $\times 196$) to pub-lication-quality scans (6000 \times 4000).

Depending on image size and content, it is possible to store about 100 images per disk in the standard consumer Photo-CD format. Other professional formats are available

Resources

- The Visual Display of Quantitative Information (\$40), Envisioning Information (\$48), Graphics Press, Box 430, Cheshire, CT 06410, (203) 250-7007.
CIRCLE 41 ON FREE INFORMATION CARD
- Photo CD, Eastman Kodak Company, 343 State Street, Rochester, NY, 14650-0519, 800-242-2424.
CIRCLE 42 ON FREE INFORMATION CARD
- Pro 16 Multimedia System, MediaVision, 3185 Laurelview Court, Fremont, CA 94538, 800-348-7116, 510-770-8600. CIRCLE 43 ON FREE INFORMATION CARD
- Visual Information System, Tandy Corporation, 1800 One Tandy Center, Forth Worth, TX 76102.
CIRCLE 44 ON FREE INFORMATION CARD
- Compact Disc Interactive, Philips Consumer Electronics Company, One Philips Drive, P.O. Box 14810, Knoxville, TN, 615-475-0317.
CIRCLE 45 ON FREE INFORMATION CARD
- Commodore Dynamic Total Vision, Commodore Business Machines, Inc., 1200 Wilson Drive, West Chester, PA 19380, 215-431-9100.
CIRCLE 46 ON FREE INFORMATION CARD
that allow storage of as many as 6000 low-resolution images (e.g., for image catalogs).

For family-room use, Photo-CD's can "play back" on special players (like that shown in Fig. 1) that also handle audio CD's, and on select computer-based CD-ROM drives (in particular, those claiming CDROM/XA compatibility). For com-puter-based use, Kodak has introduced low-cost PC- and Macintoshbased software packages for viewing images and getting them into standard bitmap formats such as

PICT, TIFF, and EPS. Some commercial graphics editors (e.g., Publishers Paintbrush) already offer built-in Photo-CD support. Apple has announced that it will support the Photo-CD format directly in System 7 software, and via QuickTime (Apple's set of technologies and specifications for time-dependent data, (e.g., audio and video sequences). Kodak has also announced several advanced imageediting packages.
Photo-CD uses a multiple-write technology that allows several sessions to be placed on a single disc at several times. If you're interested in using multi-write capabilities on a computer, make sure your CDROM drive can handle it. Check Kodak's hotline at the number shown in the sidebar for information on compatible CD-ROM drives, processing centers, and software availability.

You want a revolution?

Will CDTV, CD-I, VIS, or PhotoCD bring about some revolution in the computer industry, the consumer electronics industry, or both? Are they destined for the junk heap, along with the early personal computers and dedicated video games of the 70 's and 80 's?
They're probably all headed for the junk heap sooner or later, but VIS and Photo CD have the best chance of survival during the next few years. Commodore's on-again/ off-again marketing style inspires confidence in neither developers nor consumers. Philips' system has some technical advantages, for example hardware-assisted full-motion video based on the industrystandard Motion Picture Expert Group (MPEG) compression format. But even that is an add-on to the basic player. Development systems are proprietary, and there is a lack of broad industry support.
Photo-CD, on the other hand, offers immediate advantages to the computing community, especially desktop publishing and professional imaging concerns.
Broad appeal is problematic in that Photo-CD will be competing for consumer dollars against VIS and the other systems, all of which offer more general-purpose functionality.

It seems unlikely that people would want to buy more than one CD. based digital information appliance to connect to their TV's and stereos. Viewed in that light, Photo-CD might find it difficult to crack the home market. If VIS (or the other systems) could provide Photo-CD compatibility, then Kodak might lose the player battle but win the format/ usage war. There is a lot of money to be made in processing Photo-CD's and in selling processing its workstations.

Photo-CD stands a very good chance of survival, simply because the publishing and imaging industries need it. The consumer market might go for it, depending on consumer awareness of the more gen-eral-purpose nature of VIS. I think Kodak would be smart to work with Tandy to ensure that VIS can play Photo-CD discs.
On paper, VIS looks like the safest bet among the interactive systems, both for developers and consumers. Like CDTV, VIS is really a general-purpose computer, albeit not in the present incarnation an expandable one. Because VIS is so closely related to the DOS/Windows platform, content developers can create and port titles at low cost and low risk. Assuming Tandy stays with the architecture, upgrading to higher-performance technology (e.g., full-motion video) should be fairly painless. Also, if anywhere near the number of promised titles actually materialize by the time VIS hits the market (presently aimed for Christmas 1992), Tandy will have a huge advantage.
VIS is extremely interesting. If it succeeds, it will mark the first success of a manufacturer in more than a decade in trying to penetrate the consumer market with a generalpurpose digital information system. Computerphiles will probably view VIS as under powered. But with the Windows platform underpinning the system, there's lots of potential for growth.
I'm looking forward to hooking a VIS system up to my home-entertainment center. However, I know up-front that it's a throw-away purchase; the computer industry is still evolving so rapidly that VIS will be superseded by something. My

FIG.2-TANDY'S VIS or Video Information System runs a Windows-like operating system designed by Microsoft.
hope is that, between now and obsolescence, my kids will get more from it than from a video game.

Product watch

l've looked at several multimedia upgrade kits over the past year, and have reached several conclusions. First, the base MPC specification is pretty low-fi. Nonetheless, results can still be startling. The best MPC upgrade kit l've found is from MediaVision. It includes what is currently one of the best CD-ROM drives on the market. NEC's SCSI-based CDR-83, along with the ProAudio Spectrum 16 -bit stereo audio card, which has a built-in SCSI interface. The bundle also includes a slew of software, including Lotus 1-2-3, Compton's Multimedia Encyclopedia, a CD-based version of Sierra's King's Quest V, an authoring tool called Action from Macromind, and numerous DOS and Windows utilities for recording, mixing, and playing back sound and MIDI files. The utility software varies widely in quality, user interface, and usefulness, and it does not include a Windowsbased MIDI editor, the major shortcoming of the package. The methods for configuring system interrupts and I/O port use is poorly documented, but once running, the package works like a charm.

Bookshelf

You probably take that voltage-versus-time display on the front of your oscilloscope for granted. What you might not know is that graphical displays of data were not even invented until the latter half of the nineteenth century, long after the invention of calculus. An En-
glishman, William Playfair, and a Swiss-German, J. H. Lambert, claim the honor of first publishing the many basic techniques of statistical graphics. You might also be unaware of what makes bar charts. time series, and other kinds of graphs really work. Why is that important? Because most technical professionals use spreadsheet, data-analysis, and visualization programs to analyze and display data, be it voltage, current, resistance, impedance, dollars, or other quantities. Computer tools give you lots of options for displaying your data using color, gray scales, hatching, perspective, and more. However, unless you're careful, you can get into trouble, graphically speaking, and thereby obscure your real message.

If you ever produce a chart or graph as part of your job, you absolutely must look at two books by Yale statistics professor Edward R. Tufte: The Visual Display of Quantitative Information (originally published in 1983), and Envisioning Information (1990). Alternate titles for those two exquisite works could be Volumes I and II of Use and (Especially) Abuse of Statistical Data in Graphical Form. In example after example, Tufte shows and tells why some things work and others don't. along the way exposing numerous misguided attempts at "improving" the presentation of statistical data. Tufte understands that effective communication of information involves carefully meshing form and content. He practices what he preaches. Beg, buy, or borrow copies of these works. You won't be disappointed.

BUYER'S MART

FOR SALE

TUBES. "oldest," "latest." Parts and schematics. SASE for lists. STEINMETZ, 7519 Maplewood Ave., Hammond, IN 46324 RE.
RESTRICTED technical information: Electronic surveillance, schematics, locksmithing, covert sciences, hacking, etc. Huge selection. Free brochures. MENTOR-Z, Drawer 1549, Asbury Park, NJ 07712.
TUBES, new, up to 90% off, SASE, KIRBY, 298 West Carmel Drive, Carmel, IN 46032.
T.V. notch filters, phone recording equipment, brochure $\$ 1.00$. MICRO THinc. Box 63/6025, Margate, FL 33063. (305) 752-9202.

ENGINEERING software and hardware, $\mathrm{PC} /$ MSDOS. Circuit design and drawing, PCB layout, FFT analysis, mathematics, circuit analysis, etc. Data acquisition, generation, I/O PCB's, etc. Call or write for free catalog. (614) 491-0832, BSOFT SOFTWARE, INC., 444 Colton Rd., Columbus, OH 43207.

CABLE TV Equipment. Most type available. Special: Oak M35B $\$ 39.95$. No catalog. COD orders only. 1 (800) 822-9955.
JERROLD, Tocom and Zenith "test" chips. Fully activates unit. $\$ 50.00$. Cable descramblers from $\$ 40.00$. Orders 1 (800) 452-7090. Information (213) 867-0081.
TOCOM-Jerrold Impulse-Scientific Atlanta Converters, two year warranties, also test modules for your converters. Contact NATIONAL CABLE, (219) $935-4128$ full details.

CABLE TV converters: Jerrold, Oak, Scientific Atlantic, Zenith \& many others. "New MTS" stereo add-on: mute \& volume. Ideal for 400 and 450 owners! 1 (800) 826-7623, Amex, Visa, MC accepted. B \& B INC., 4030 Beau-D-Rue Drive, Eagan, MN 55122.

CABLE TV converters. Jerrold, Zenith, Pioneer, Oak, Scientific Atlanta, and many more. 12 years experience gives us the advantage. Visa/MC Amex COD ADVANTAGE ELECTRONICS, INC., 1 (800) 952-3916 1125 Riverwood Dr., Burnsville, MN 55337.

CLASSIFIED AD ORDER FORM

To run your own classified ad, put one word on each of the lines below and send this form along with your check to: Electronics Now Classified Ads, 500-B Bi-County Boulevard, Farmingdale, NY 11735
PLEASE INDICATE in which category of classified advertising you wish your ad to appear. For special headings, there is a surcharge of $\$ 25.00$.
() Plans/Kits () Business Opportunities
() For Sale \} Education/Instruction () Wanted () Satellite Television

Special Category: $\$ 25.00$
PLEASE PRINT EACH WORD SEPARATELY, IN BLOCK LETTERS.
(No refunds or credits for typesetting errors can be made unless you clearly print or type your copy.) Rates indicated are for standard style classified ads only. See below for additional charges for special ads. Minimum: 15 words.

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15 (\$46.50)
16 (\$49.60)	17 (\$52.70)	18 (\$55.80)	19 (\$58.90)	20 (\$62.00)
21 (\$65.10)	22 (\$68.20)	23 (\$71.30)	24 (\$74.40)	25 (\$77.50)
26 (\$80.60)	27 (\$83.70)	28 (\$86.80)	29 (\$89.90)	30 (\$93.00)
31 (\$96.10)	32 (\$99.20)	33 (\$102.30)	34 (\$105.40)	35 (\$108.50)

We accept MasterCard and Visa for payment of orders. If you wish to use your credit card to pay for your ad fill in the following additional information (Sorry, no telephone orders can be accepted.):

Card Number
Expiration Date

IF YOU USE A BOX NUMBER YOU MUST INCLUDE YOUR PERMANENT ADDRESS AND PHONE NUMBER FOR OUR FILES. ADS SUBMITTED WITHOUT THIS INFORMATION WILL NOT BE ACCEPTED. CLASSIFIED COMMERCIAL RATE: (for firms or individuals offering commercial products or services) $\$ 3.10$ per word prepaid (no charge for zip code)...MINIMUM 15 WORDS. 5% discount for same ad in 6 issues: 10% discount for same ad in 12 issues within one year; if prepaid (not applicable on credit card orders). NON-COMMERCIAL RATE: (for individuals who want to buy or sell a personal item) $\$ 2.50$ per word, prepaid....no minimum. ONLY FIRST WORD AND NAME set in bold caps at no extra charge. word, prepaid....no minimum. ONLY FIRST WORD AND NAME set in bold caps at no extra charge. Additionar bold face not available as all caps) 554 per word additional. Entire ad in boldface, $\$ 3.70$ per
word. TINT SCREEN BEHIND ENTIRE AD: $\$ 3.85$ per word. TINT SCREEN BEHIND ENTIRE AD PLUS Word. TINT SCREEN BEHIND ENTIRE AD: $\$ 3.85$ per word. TINT SCREEN BEHIND ENTIRE AD PLUS
ALL BOLD FACE AD: $\$ 4.50$ per word. EXPANDED TYPE AD: $\$ 4.70$ per word prepaid. Entire ad in boldface, $\$ 5.60$ per word. TINT SCREEN BEHIND ENTIRE EXPANDED TYPE AD: $\$ 5.90$ per word. TINT SCREEN BEHIND ENTIRE EXPANDED TYPE AD PLUS ALL BOLD FACE AD: $\$ 6.80$ per word. DISPLAY ADS: $1^{\prime \prime} \times 216^{\prime \prime}-\$ 410.00 ; 2^{\prime \prime} \times 21 / 8^{\prime \prime}-\$ 820.00 ; 3^{\prime \prime} \times 2^{1 / 4}-\$ 1230.00$. General Information: Frequency rates and prepayment discounts are available. ALL COPY SUBJECT TO PUBLISHERS APPROVAL. ADVERTISEMENTS USING P.O. BOX ADDRESS WILL NOT BE ACCEPTED UNTIL ADVERTISER SUPPLIES PUBLISHER WITH PERMANENT ADDRESS AND PHONE NUMBER. Copy to be in our hands on the 1st of the third month preceding the date of the issue. (i.e., Aug. issue copy must be received by May 1st). When normal closing date falls on Saturday, Sunday or Holiday, issue closes on preceding working day. Send for the classified brochure. Circle Number 49 on the Free Information Card.

SECRET cable descramblers! Build your own descrambler for less than $\$ 12.00$ in seven easy steps. Complete instructions $\$ 10.00$. Radio Shack parts list and free descrambling methods that cost nothing to try included. HARRYWHITE, PO Box 1790, Baytown, TX 77520 .
PROTECT yourself and equipment from electrical shocks. Complete unit $\$ 98.95$. SAFETYUNLIMITED, 1743 Baldwin Road, Yorktown, NY 10598. S/H \$5.00.

TEST equipment pre-owned now at affordable prices. Signal generators from $\$ 50.00$, oscilloscopes from $\$ 50.00$. Other equipment including manuals available. Send $\$ 2.00$ U.S. for catalog refunded on first order. J.B. ELECTRONICS, 3446 Dempster, Skokie, IL 60076. (708) 982-1973.

FREE CATALOG

FAMOUS "FIRESTIK" BRAND CB ANTENNAS AND ACCESSORIES. QUALITY PRODUCTS FOR THE SERIOUS CB'er. SINCE 1962 FIRESTIK ANTENNA COMPANY 2614 EAST ADAMS PHOENIX, ARIZONA 85034

Converters, Remote Controls, Descramblers, more

All major brands carried

You Need Tree City USA

City trees add the soft touch of nature to our busy lives. They cool our cities, fight pollution, conserve energy, give wildlife a home, and make our neighborhoods more liveable.

Support Tree City USA where you live. For your free booklet, write: Tree City USA, The National Arbor Day Foundation, Nebraska City, NE 68410.

The National
Arbor Day Foundation

6-1/2" Two-Way System Perfect surround speakers. Customize your media room with these super quality, in-wall speaker pairs. Full size 6-1/2* woofer. Heavy duty 1 ' soft dome tweeter. Built-in crossover. Fits any standard 2×4 or larger wall. Retrofit design allows easy instaliation in new or existing walls. Response: $40-20,000 \mathrm{~Hz}$. 80 ohm impedance. 40 watts RMS, 60 watts maximum. Includes provision for easy $70 \mathrm{~V} / 25 \mathrm{~V}$ transformer mounting. Overall dimensions: $8-1 / 2^{+} \times 12^{*}$. Net weight: 9 lbs
\#RN-300-036 $\underset{\text { Sug List }}{\mathbf{\$ 2 4 9 ^ { \text { es } }}} \underset{(1 / 3 \text { prs) }}{\$ 99^{95}} \underset{\text { (4 prs-up) }}{\$ 950}$

Mini Electrolytic Cap Kit

This 60 piece kit contains a
selection of 16 volt and 50 volt mini electrolytic capacitors. 5 pieces each of $10,47,100,220$, and 470 ut. 16 volt radial caps. 5 pieces each of 2.2,4.7, 10, 22, 33, 4,7 and 100 ut. 50 volt radial caps. This convenient kit has many of the "low profile" caps used in camcorders, VCRs, portables and other products where space is limited. A $\$ 27.00$ value.
\#RN-024-900
Expleass
340 E. First St., Dayton, Ohio 45402 Local: 513-222-0173 FAX: 513-222-4644 $\$ 5.00$ U.S. funds for catalog postage.

Ultimate 5", 2 Way System
 A perfect way to upgrade your

 car's sound system. 5^{*}, 2 way bridgeless speaker pair featuring paper cones that are mpregnated with a special ingredient to prevent water damage. 1^{*} aluminum voice oll. oz. magnet. impedance 4 ohm. Frequency response: $20-21,000 \mathrm{~Hz}$. Power handling: 30 watts RMS, 55 watts maximum. SPL: $92 \mathrm{~dB} 1 \mathrm{~W} / 1 \mathrm{M}$. Mounting depth: $1-3 / 4^{*}$. Net weight: 4 lbs .

\#RN-265-282 $\$ 46^{95} \quad \$ 43^{50}$

12" Pioneer Woofer

Ribbed paper cone with Pioneerspecial poly foam surround, Impedance: 8 ohm. Frequency response: $30-2,500 \mathrm{~Hz}$.
Sensitivity: $92 \mathrm{~dB} 1 \mathrm{~W} /$
1 M . Power handling capability: 60 watts RMS, 90 watts maximum. Magnet: 20 oz . Voice coll diameter: 1-1/2". Resonant frequency: 30 Hz. VAS $=11.78 \mathrm{cu} \mathrm{ft} ., \mathrm{QMS}=$ 2.217, QES = .425, QTS = .357. Hole: 10-7/8* Net weight: 5 lbs. Pioneer \#A30FU20-52F
\#RN-290-105
$\underset{(1-3)}{\$ 29^{95}} \$ 2 \mathbf{2 F}_{(4 . \mathrm{up})} \mathbf{7}^{50}$

Black Widow Challenger Remote Security System

Dollar for dollar, and feature for feature the Challenger security system out performs most competitors in its class. Features include: Two-2 button remote transmitters, compact design for under dash or under seat installation, passive or active arming. visual/audible indication when arming/disarming, remote panic, 360 degree shock sensor, door lock output, starter disable with relay and hamess. 120 dB siren, entry tamper violation memory, built-in parking light flasher or horn sounding circuit. current and switch sensing, manual override switch. 1 positive and 2 negative triggers, flashing LED, RF satety lock-out, automatic reset, glass break sensor and more. Net weight: 3 lbs .
\#RN-330-037

The Ultimate Test CD

The Ultimate test CD was designed for use by both the audio amateur and the professional sound engineer. This CD can be used to test CD players, speakers, amplifiers, and for tuning instruments. The manual is written in easy to understand english and takes you step-by-step through each track of the CD and explains its purpose. The Ulimate test CD is a necessary tool for anyone who is serious about quality audio sound.
\#RN-510-100

- 30 day money back guarantee $\cdot \$ 20.00$ minimum order \cdot We accept Mastercard, Visa, Discover, and most C.O.D. orders. 24 hour shipping - Shipping charge $=$ UPS chart rato $+\$ 1.00$ ($\$ 3.50$ minimum charge) -Hours: 8:30 am - 7:00 pm EST, Monday - Friday, 9:00 am - 5:00 pm Saturday. Mail order customers, please call for shipping estimate on orders exceeding 5 lbs . Foreign destination customers please send

MAßK V ELGCIBONICS, INC.

AMPLIFIERS		KIT	ASSMB.
MODEL	DESCRIPTION		
	300W Mearer huto Mono Power Anoliter 444 pogta Volor Memo as Mis Purisose Mecosy Gronator 4 MuthPurpone Meloy Gentrator (Melofy such as Hoppy Birthdy Woding Match efc.)	16500	18800
TA.22		3000	
TASOC			1720
TA-12		14.5	18.
	Birthdy Wedding Match. etc.) \mathbf{A} 36 W Class 'A' Main Power Mono Anp. A. 4	315	
14.201	Mcootonek artuy Mret Power Anp A	13	
${ }^{7} 1.2000$			
TA.300 50.300	Wakran Eobsteriker Sterio Fowet Ato 1 30w Min-Purpose Singe Cranne Amp a		
	60 W + 60 W Stereo Fower Amplinet (with Mce ingst casa 3 transtorimer includedi ΔA *		
TA-323A			
ta. 377 A	$30 \mathrm{~W}+3 \mathrm{~W}$ Sterte Pre-Main Amp - a Sate of Be Ant fully Complementary systemmetrical		
	120 W Moter fowe Mono kng a		
\$14-77		00	500
	t20W - $120 W$ ICDC Swno H A S phe then deno	750	8900
ta-800		63.52	
		459	
TA. 1000			
			\%
TA2200	OC fet Soper Cass 'R Prokme AAA	4770	524
TA 2500			7800
TA2500			Ev5
TA 3000			200
TA3000	$300 W$ HQ Aodo fomer Mono Amp AAA	8500	100
SM-222	7 Band Sture Ni-f Graphic Equalzet AAL	26.80	38
SMM 328			
${ }^{51 / 233}$	AudiaViteo Surround Sound Processot (case \& Transtorther includec) $\mathbf{A A A *}$		
$\begin{aligned} & \text { suew } \\ & \text { sus } \end{aligned}$		7300 2800	
	Oymumic Nose Arsoction A 		
	MISCELLANEOUS	KIT	ASSM3.
Tr-1גMKS	8atery lourncant Light Onver A	11.97	14.97
		920	11.20
TY-8	Eectronc Touch Smich A --... Electronic Lote	15.00	2100
TV-114	Muib Functionil Contral Sumith A	850	1050
Tr-12t	Dotal Cock wTote 4	2500	3200
TY-13		20.15	22.20
Tr-14	Electronic Stock A Mera	925	
${ }^{T r-18}$	High pracsion Sound Contral Smith a	1022	1450
TV.20		21.45	2500
TY.238			300
Tr.2s	Sterto Loudspuser Protector 4	15.85	20.65
Tr.35	PMW Weiess Microphoce 4		
TV.38	ACDC Owate figul Cock A	1900	2629
Tr.38		1200	
Tr-4MKS			
		2800	3350
Tr-42	Bar Oot Lumi Meter 4 A	24.15	3381
TV.45	20 Suga BarDot Autio Leve Dagiay a	38.45	16.14
TY-47	Superio Electronic Rovetio AL		2950
1015	10.000ut 05V Capacitor Siopentid to TA 3500 T		
017			1400
	TA-47. Th-10004 S 74.1200w63) ALPS (Dua) Yariabie Resistor (Suggented for TA -37AA		
022			
	TA-2200 S TA -802)		220
	REGULATORS	KIT	
	O-25V AngulatisA DC Power Susply case transtormer notinclisers 4		
		16.50	76
TR. 503	OSOV MA Pequated DC Powe Supbly wSion Circuits Overtoas Protaction lcase tranitormer fot inclioded a a		
Th-2025		17.75	2465
	current-limiting A shor- -ircul protectec) AAA	6275	7875
	DIGITAL MEIERS AND COUNTERS	KIT ASSMB.	
Tr-4	3/000themitere	2305	
Su-4J		359	
SM48	4/616-Prodion DPM. 4 AL	3100	4800
SM-43A		41.20	5200
SM49	34/ Mumifuections LCD OMP. (whtolf fuinction)		4450
SM. 100	150 MC Opotal Fequency Counter AAA	8500	105
METAL CABIMEIS WITH ALUMINUM FROMT PAMEL			
M00tL	KxWro uatorv		Pract
10.123			
Lo-1634			2050
10.1924			4, 50
10.1225			
L6-1983			
	POWER TRANSFORMERS		

MOOE	DESCMPT	Match	
1001	250x234T030\% 254	7A 800	∞
1002	356x 234		∞
\%00	+0V125A	TA-77	3000
Nom	240×284	1 4.120 Na	2300
${ }^{0005}$	-	+ha-3s58	
\$007	59×1284	Th. 600	780
2008.*	620V12 39Vx2 ${ }^{\text {a }}$	Th 5600 Mc	+500
N00\%**	$04 \mathrm{~N}=2 \mathrm{SN} \times 2 \mathrm{~B}$	Th. 5000 N3	
1010	$300 \times 2.300 \times 2400 \mathrm{~mA}$	74378 74.2200	
mo11. ${ }^{\text {c }}$	O9V $\times 2.228$	Th.2025	-

We accept major Credit Cards, Money Orders and Checks - We ship by UPS ground inside US (min. $\$ 5.00$) and ship by US mall outside US. Ploase call out sales
department tor oiders over 2 los or fortign orders - Al assembled unitshave 30 days department for oiders over 2 los or fortion orders - All assembled units have 30 days
warranty - Ouanty or Volume discount avaluble upon requets We wartaty - Oantey or volume

ORDER IN CALIFORNIA 1-800-521-MARK ORDER DUTSIDE CA 1-800-423-FIVE CATALOG \& IUFORMATION (213) 888.8988 ORDER BY FAX (213) 888-6868

Quality Microwave TV Antennas WIRELESS CABLE - IFTS - MMDS - Amateur TV Ulitra High Gain 50db(+) - Tuneable 1.9 to 2.7 Ghz - 55-Channel Dish System $\$ 199.95$ - 36-Channel Dish System $\$ 149.95$ - 20-Channel Dish System $\$ 124.95$ - Optonal Commercial Grd Anterga (nof shownl Ads $\$ 5000$

- Cal of write ISASE for "FREE" Catalog

PHILLIPS-TECH ELECTRONICS
Dish System P.O. Box 8533 . Scottsdale, AZ 85252 LIFETIME (602) $947-7700$ ($\$ 3.00$ Credit all phone orders)

GENERAL Instrument DPV.7's $\$ 250.00$, Scientific Atlanta 8500 ' $\$ 150.00$, Tocom's $\$ 150.00$ to \$250.00. CABLE WORLD, 1 (800) 234-7193.
PREVENT descrambler damage. Don't bite the bullet!! Snooper Stopper Data Pulse Blocker $\$ 33.95$, with Surge Protection $\$ 44.95$.. Wireless Video Sender \$54.95. VCI, 1 (800) 925-9426.
CABLE TV filters, cylinder type. The best made. All channels available. Low prices. Quantity discounts. Call 1 (800) 643-9170 ext. 170.
DESCRAMBLERS and turn-on kits - We keep our prices low by having no $800 \#$ and no catalog - no bull! We have the best prices, all types available. Mention Santa for extra 5% discount. Call (407) 852-9576.
300 Experimenters Circuits - Complete in 6 practical books using diodes, relays, FET's, LED's, IC 555's, and IC CA3130's for building blocks. Only $\$ 33.00$ plus $\$ 5.50$ for shipping. USA and Canada only. US funds. ETT, INC., PO Box 240, Massapequa Park, NY 11762-0240.

CB RADIO OWNERSH

We specialize in a wide variety of technical information, parts and services for CB radios. 10-Meter and FM conversion kits, repair books, plans, high-performance accessories. Thousands of satisfied customers since 1976! Catalog \$2.

CBCINTERNATIONAL
P.O. BOX 31500RE, PHOENIX. AZ 85046

LASERS, light shows, plans, books, . 5 mw to 20 watts, free catalog call 1 (800) 356 - 7714 or write MWK IND., 198 Lewis Ct., Corona, CA 91720.
USED "Sweet Art" computer cake decorating machine. Can reproduce photos using edible food color on cakes. Widow must sacrifice. Make offer. (619) 944-7244.

3 TUBES. Arlen Supply receiving communication, audio, industrial. 7409 West Chester Pike, Upper Darby, PA 19082. Call 1 (800) 458-1301.
UNIVERSAL Microprocessor simulator/debugger V2.0 each CPU $\$ 90.00$. Simulates popular microprocessors. Features cross assembler, disassembler, windowed source-level debugger. ROMY-8 EPROM Emulator $\$ 155.00$. Emulates EPROM 2716-17256. J\&M Inc., 83 Seaman Road, West Orange, NJ 07052. Tel: (201) $325-1892$, Fax: (201) 736-4567.
SCIENTIFIC Atlanta model 8580 converter/descrambler w/remote. Works on most Scientific Atlanta cable systems. Wholesale price $\$ 229.00$ Call (404) 740-0711 UNIVERSAL PRODUCTS.

CABLE Converters, accessories below wholesale! Immediate delivery from giant stock! COD orders only. 1 (800) 995-1749.
CABLE TV new! Starquest 2021 550MHz converter, loaded wifeatures only $\$ 60.00$. Original unmodified combos w/decoders: Starcom6 $\$ 99.00, \mathbf{z}$-tac $\$ 99.00$, SA8580 $\$ 149.00$. Five lot minimum order. Free catalog: INTELLIVIDEO, 1311 EI Camino, \#211, Millbrae, CA 94030 . Cali now! (415) 583-8283.
CHRISTMAS \& other music chips. Musical Xmas lights, more, 5 IC's for $\$ 11.00$ postpaid. S.A.S.E. for info. THUMB, Box 344 R , Marysville, MI 48040 .
EPROMS, Assorted, i.e., $27128 A-15 \$ 3.00$ each minimum quantity 13 pieces. C.O.D., American Express. H.E.A.R.T. Inc., 1 (800) 677-3773.

SATELLITE TV

FREE catalog - Lowest prices worldwide. Satis faction guarantee on everything sold - Systems, upgrades, parts, all major brands factory fresh and warrantied. SKYVISION, 1012 Frontier, Fergus Falls, MN 56537. 1 (800) 334-6455. Outside US (218) 739-5231
SATELLITE TV - Do it yourself - major brands discounted, we'll beat everyone's price. DISCOUNT LARRY (609) 596-0656

VIDEOCIPHER II descrambling manual. Schematics, video, and audio. Explains DES, Eprom, CloneMaster, 3Musketeer, Pay-per-view (HBO) Cinemax, Showtime, Adult, etc.) $\$ 16.95, \$ 2.00$ postage. Schematics for Videocypher plus, $\$ 20.00$. Schematics for Videocypher 032, $\$ 15.00$ Collection of software to copy and alter Eprom codes, $\$ 25.00$. CABLETRONICS, Box 30502R, Bethesda, MD 20824
SUPER low satellite prices. Free U.S. and International catalog. SATMAN, (309) 692-4140 (Int'l), 1 (800) 472-8626 in U.S.

PLANS AND KITS

FASCINATING electronic devices! Dazers! Lasers! Transmitters! Detectors! Free energy! Tesla! Kits/assembled! Catalog $\$ 4.00$ (refunda ble). QUANTUM RESEARCH, 17919-77 Ave., Edmonton, AB. T5T 2S1.

KITS make great holiday gifts! Send for free catalog. LNS TECHNOLOGIES, 20993 Foothill Blvd. Suite 307R, Hayward, CA 94541-1511.

CIRCLE 191 ON FREE INFORMATION CARD

REMOTE CONTROL KEYCHAIN

Complete w/mini-trapanitter and 55 vde RF receiver Fully assembled including plans \& \& o buitd your own auto aiam $\$ 24.95^{\text {Check Vise or MC }}$ 5 @ S19.95, 10 @ S14.95 Visitect Inc, Box 14156 . Fremont, ca, 94539 (510) $651-1425$ Fax (510)651-8454

HOBBY/broadcasting/HAM/CB/surveillance transmitters, amplifiers, cable TV, science, bugs, other great projects! Catalog \$1.00. PANAXIS, Box 130-F12, Paradise, CA 95967.
DESCRAMBLER kits. Complete cable kit $\$ 44.95$. Complete satellite kit $\$ 49.95$. Add $\$ 5.00$ shipping Free brochure. No New York sales. SUMMIT RE, Box 489, Bronx, NY 10465.
SURVEILLANCE transmitter kits tune from 65 to 305 MHz . Mains powered duplex, telephone, room, combination telephone/room. Catalog with Popular Communications, Popular Electronics and Radio-Electronics book reviews of "Electronic Eavesdropping Equipment Design," $\$ 2.00$. SHEFFIELD ELECTRONICS, PO Box 377785-C. Chicago, IL 60637-7785.

GREAT Project. Silent Sam reminds you when you forget. SSTSR (Turn Signal Reminder) beeps 3 seconds atter 15 seconds. Oycle repeats until cancelled. Unobtrusive, recycles when braking. Compact kit mounts atop flasher. Parts, case, PCB, schematic, instructions $\$ 15$ PPD; 2/\$25; $3 / \$ 30$. Visa MC. Free brochure 1-800-398-5605. Prewired $\$ 20$ PPD; 2/\$35; 3/\$45 Silent Sam, 1627 Basil Dr. Columbus, OH 43227.

DESCRAMBLING, new secret manual. Build your own descramblers for cable and subscription TV. Instructions, schematics for SSAVI, gated sync, Sinewave, (HBO, Cinemax, Showtime, UHF, Adult) $\$ 12.95, \$ 2.00$ postage. CABLETRONICS, Box 30502R, Bethesda, MD 20824.

BUILD $0-50$ volt regulated dual tracking power supply. Complete schematics and instructions. \$5.95. SMS ENGINEERING, RE 5932 West Bell Road, Suite D106, Glendale, AZ 85308.
PROTOTYPING PC boards? Fast and easy from artwork to etched board in 30 minutes or less Complete step by step plans and samples! \$6.50 check or money order to E.G.G., PO Box 11390 , Bradenton, FL 34282.

BOOST stereo transmitter kit output power! Super simple plans. $\$ 4.00$. X-TEK, PO Box 521164 , SLC, Utah 84152-1164.
60 SOLDERLESS Breadboard Projects in two easy-to-read pocket books. Complete with circuit descriptions, schematics, parts layouts, component listings, etc. Both books (BP107 \& BP113) only $\$ 11.90$ plus $\$ 3.50$ for shipping. USA and Canada only. US funds. ETT, INC., PO Box 240, Massapequa Park, NY 11762-0240.
WIRELESS guitar transmission system. Build your own for $\$ 39.95$! (kit) RABIOACTIVE TRANSMISSIONS (519) 250-0559/FAX: 250-0560
TEST-Aids for testing units in full servive mode. Starcom VII, $\$ 40.00$; Starcom VI, \$30.00; Starcom DPBB, $\$ 50.00$; Pioneer clears error codes E2-E5, $\$ 60.00$; Pioneer cubes, will not alter internal serial \#, \$125.00; Tocom VIP 5503/5507, $\$ 25.00$; Tocom mapping, $\$ 40.00$; S.A. 8500 , $\$ 25.00 ; 8550 \$ 30.00 ; 8580, \$ 40.00 ; 8570 / 90$, $\$ 50.00$; Zenith, $\$ 25.00$; security bits and remotes. N.E. ENGINEERING, (617) 770-3830.

HI fidelity FM stereo transmitter $\$ 49.95$. Surround sound decoder amp $\$ 29.95$. 5 watt audio amp $\$ 14.95$. Kits are complete with PCB and pre-tested parts. KEYVID, 508 Plover Place, Palm Harbor, FL 34683. (813) 787-0311.

One tree can make 3,000,000 matches.

One match can burn 3,000,000 trees.

New solid-state and digital TV sets, stereos, and videorecorders are tougher to repair than old-fashioned tube type sets and require special training for the service technician who works on them.
Only a few states have laws requiring competency tests for licensing technicians who repair consumer electronics, but fifteen years ago the In ternational Society of Certified Electronic Technicians (CET) began its own certifica. (CET) began its own certification program to qualify these technicians and those in industry. To carry the CET designation, technicians must have four years experience and pass a rigid examination on general electronics and a specific area of expertise such as audio or radio-TV
Many consumers look for a Certified Electronic Technician in the shop when they need any electronic item repaired.

Free Consumer Checklist A consumer checklist for selecting a service shop is av-

Modern electronic equip ment such as digital TVs or stereos should be repaired by specially trained people.
ailable free by sending a stamped, self-addressed en velope to: Checklist, ISCET 2708 West Berry, Fort Worth TX 76109. The list remind consumers to check such consumers to check such have the parts for your par have the parts for your par ticular brand?", "Did you get an estimated price?", and "Did you check this company with the Better Business Bureau?

CABLETRONICS

CONVERTERS

PANASONIC TZP 145
$\$ 88.00$ \$75.00
$\$ 79.00$ \$69.00
$\$ 70.00$
STARGATE 2000 $\$ 25.00 \quad \$ 19.00 \quad \$ 15.00$

ADD-ON DESCRAMBLERS
SB-3 (NEW)
$\$ 50.00 \quad \$ 45.00$
$\$ 43.00$
*SB-3 FACTORY
SA-3
DTB-3
KNI2A-2 or 3
*HAMILIN MLD 1200-3 *ZENITH SSAVI SA-DF
$\$ 45.00 \quad \$ 39.00 \quad \$ 35.00$
$\$ 56.00 \quad \$ 50.00 \quad \$ 45.00$
$\$ 65.00 \quad \$ 55.00 \quad \$ 50.00$
$\$ 49.00 \quad \$ 45.00 \quad \$ 40.00$
$\$ 49.00 \quad \$ 40.00 \quad \$ 35.00$
\$165.00 \$149.00 \$125.00
$\$ 109.00 \quad \$ 95.00 \quad \$ 75.00$
COMBOS
JERROLD DPV7
JERROLD DPBB SA8580 COMBO *JERROLD DRX-3-DIC JERROLD DRZ-3-DIC *OAK M35B
HAMLIN SPC 4000 3M ADD $\$ 10.00$ FOR VARISYNCH
*Refurbished as New

DECLARATION OF AUTHORIZED USE- 1 , the undersigned, do hereby declare
under penalty of perjury that all products purchased, now and in the future,
will only be used on TV systems with all applicable federal and state laws.
FEDERAL AND VARIOUS STATE LAWS PROVIDE FOR SUBSTANTIAL
CRIMINAL AND CIVIL PENALTIES FOR UNAUTHORIZED USE.

Date
Signed
Cabletronics
9800 D Topanga Canyon Blvd., Suite 323,
Chatsworth, CA 91311
For Free Catalog, or to place an order call
(800) 433-2011 • FAX (818) 709-7565

PRODUGTS and KITS

Remember those Martian
Space Ships in HG Wells
War of the Worlds?

MYSTERY

Levitating Device
Objects float on air and move to the touch. Defies gravity! Amazing gift, conversation piece, magic trick or great scientific project.
ANT1K Easy-Ass'y Kit/Plans $\$ 19.50$

FM Wireless Microphone!
Crystal clear, ultra-sensitive pickup transmits voices, sounds to any FM radio. For security, monitoring children, invalids. Be the local DJ! MVP1 Plans . $\$ 7.00$
MVP1K Kit/Plans $\$ 39.50$

3 MILE
 Telephone Transmitter!

Automatically transmits 2 sides of phone conversation to any FM radio. Tunable, easy-assembly PC board. Operates only when phone is in use. VWPM7 Plans
VWPMK7 Kit/Plans $\$ 39.50$

TV \& FM Joker/Jammer
Pocket size device lets you remotely disrupt TV or radio reception. Great gag! Discretion required. Easy-build electronic kit. EJK1KM $\$ 19.50$

$100,000 \mathrm{~V}-20^{\prime}$ Range

 Intimidation Device! Electronic module, may be enclosed tor handheld, portable, or fixed uses. ITM2 Plans (creditable to kit) $\$ 10.00$ ITM2K Kit \& Plans $\$ 49.50$READY-TO-USE, AUTOMATIC Phone Recording System
Complete with extended play tape recorder \& line interface switch. Automatically records both sides of conversation. Check Local Laws on Proper Use! Ready-to-Use System. TAP20X System $\$ 149.50$

INFORMATION UNLIMITED

Dept RE-4 Box 716, Amherst NH 03031 Phone 603-673-4730 FAX 603-672-5406 MC, VISA, COD, Check Accepted. ADD \$5 S\&H.

Order by Mail, or by 24 Hr Order Phone: 800-221-1705

Laser Pen

Pen sized laser, great for movies, drive- ins, pointer. Ready to use, with batt's. LAPN1 Laser Pen . $\$ 149.50$

Pocket Laser Kit

3 mw or 5 mw kits, with solid state 670 nm diode. Caution, Class Illa item. VRL3KM 3 mw Laser Kit . . . $\$ 99.50$ VRL5KM 5mw Laser Kit . . $\$ 119.50$
MORE Laser Kits!
LAS1KM 1 mw Laser, 632 nm , HeNe Easy to Build Kit $\$ 69.50$ LAS4KM 3mw Version, Kit $\$ 99.50$
LATO5 Low Cost HeNe Laser Tube! .5 mw Tube \& Plans .. only $\$ 24.50$ Other parts available separately. Great Low Budget Science Project!

Shocker Force Field

Cable TV Descrambler Kits

Universal Kit.
 \qquad
 $\$ 59.95$

includes all parts and PC Boarc. Not included is the ac adaptor or enclosure.

Tri-Mode Kit...................... $\$ 39.00$ includes all parts, PC Board and AC Adaptor. Not included is the enclosure.

SB-3 Kit. \qquad $\$ 29.00$
includes all parts, PC Board and AC Adaptor. Not included is the enclosure.

Universal Tutorial...............\$9.95
includes an in depth study of the techonology used and has troubleshooting hints
Tri-Mode Tutorial.
$\$ 9.95$
includes a gate by gate study of the circuit and has
troubleshooting hints.
Snooper Stopper.
$\$ 39.00$
Protect yourself from descrambler detection and stop the "bullet"

Call Toll Free 1-800-258-1134 C.O.D.

M \& G Electronics, Inc. 301 Westminister Street Providence, RI. 02903

ETCH PCB's yourself, new technique, no chemicals, easy, cheap, full instructions, sharefare, \$1.00, SASE, NICKNAP, Suite 297 CN 1907, Wall, NJ 07719.
MASTERSWITCH. Turns your stereo on/off with your infrared remote television. Information, S.A.S.E. to: PROGRESSIVE CONCEPTS, 1313 North Grand, \#291, Walnut, CA 91789.

BUSINESS OPPORTUNITIES

YOUR own radio station! Licensed/unlicensed AM, FM, TV, cable. Information \$1.00. BROADCASTING, Box 130-F12, Paradise, CA 95967.
LET the government finance your small business. Grants/loans to $\$ 500,000$. Free recorded message: (707) 449-8600. (KS1).
EASY work! Excellent pay! Assemble products at home. Call toll free 1 (800) 467-5566 Ext. 5192.

Engineering Manager, Pro Audio Electronics, (Position located in Bethel, CT) to direct and coordinate activities of the Audio Eng. Dept. in the commissioning and maintenance of hard disc based recording systems used in post/video production. Must be able to supervise the commissioning and maintenance of hard disc based recording/editing systems digital audio processors, and microphones. Minimum 2 yrs. experience with transputer and processor control in an embedded control system required. Forecast operating costs of dept. and direct preparation of budget, performance and evaluation of personnel. Associates degree in Electrical of Electronic Eng.. 1 year experience in position offered or 4 years experience as Service Engineer, Pro Audio Electronics. 40 hrs/week; $\$ 45 \mathrm{k} /$ annum (overtime exempt).

Send Resume to: Job Service Technical Unit
Connecticut Deptment of Labor
200 Folly Brook Boulevard
Wethersfield, CT 06109
Attention: Job Order No. 3104532

FREE CATALOG

- CABLE T.V. BOXES - ALL TYPES •
- LOW PRICES - DEALER PRICES •

AGE FRODUCTS
1-800-234-0726

HOME assembly work available! Guaranteed easy money! Free details! HOMEWORK-R, Box 520, Danville, NH 03819.
MONEYMAKERS! Easy! One man CRT rebuilding machinery. $\$ 6,900.00$ rebuilt. $\$ 15,900.00$ new. CRT, 1909 Louise, Crystalake, IL 60014. (815) 477-8655. FAX (815) 477-7013.
MAKE $\$ 75,000.00$ to $\$ 250,000.00$ yearly or more fixing IBM color monitors. No investment, start doing it from your home (a telephone required). Information, USA, Canada \$2.00 cash for brochure, other countries $\$ 10.00$ US funds. RANDALL DISPLAY, Box 2168-R, Van Nuys, CA 91404 USA. FAX (818) 990-7803.

LEARN gold, silver, platinum scrap recycling business. (Free) information. Write: RECYCLING, Box 11216PE, Reno, NV 89510-1216.
ELECTRONICS dealers: Expand your product line. Make $\$ \$ S$! Become an AMERICAN ELECTRONICS dealer! Profit opportunities since 1965. Call Scott Pruett, 1 (800) 872-1373.

ELECTECH
 CABLE T.V. DESCRAMBLERS All quality brand names
 All fully guaranteed . All the time Knowledgeable Sales Service Department FOR FREE CATALOG 800-253-0099

WANTED

INVENTORS: We submit ideas to industry. Find out what we can do for you. 1 (800) 288-IDEA.
ELECTRONIC jobs to do at home. 17 years experience. Mil spec quality. Reliable, references (602) 378-3226.

INVENTORS

INVENTORS! Can you patent and profit from your idea? Call AMERICAN INVENTORS CORP. for free information. Serving inventors since 1975.1 (800) 338-5656.

EDUCATION \& INSTRUCTION

F.C.C. Commercial General Radiotelephone license. Electronics home study. Fast, inexpensive! "Free" details. COMMAND, D-176, Box 2824, San Francisco, CA 94126.
ELECTRONIC engineering. 8 volumes complete. $\$ 109.95$. No prior knowiedge required. Free brochure. BANNER TECHNICAL BOOKS, 1203 Grant Avenue, Rockford, IL 61103

BUILDING A Robot: A Straightforward Approach. 152 pages fully illustrated. Instructions how you can easily construct a robot. Check or money order. $\$ 19.95$ plus $\$ 3.00$ shipping. HUMANFORM ROBOTICS, PO Box 158486, Nashville. TN 37215.

CABLE TV DESCRAMBLERS ^ CONVERTERS \star and ACCESSORIES.

PANASONIC, JERROLD, OAK, PIONEER, SCIENTIFIC ATLANTA AND MORE. LOWEST PRICES, FREE CATALOG. CABLE READY (800) 234=1006
COMPANY $\mathbf{2 0}$

CABLE BOX WHOLESALDRS, INC.

BEST BOXIS-BEST PRICES Immediate Shipping-COD's Satisfaction Guaranteed FR®E Catalog-Call Now 800-841-7835

Adefense against cancer can be cooked up in your kitchen.

There is evidence that diet and cancer are related. Follow these modifications in your daily diet to recluce chances of getting cancer 1. Ext more high-fiber foods such as fruits and vegetables and whole-grain cereals. 2. Include dark green and deep vellow fruits and vegeta bles nich in vitamins A and C. 3. Include cabbage, broccotii brussels sprouts, kohlrahi and cauliflower
4. Be moderate in consumption of salt-cured, smoked, and nitrite cured foods.
5. Cur down on total fat intake from animal sources and fats and oils
6. Avoid obesity
7. Be moderate in consumption of alcohotic beverages

Noone faces cancer alone

1

AMBDOCAN CANCER SOCETT

Try the
Electronics ATM
bulletin board system
(RE-BBS)
516-293-2283

The more you use it the more useful it becomes.

We support 1200 and 2400 baud operation.

Parameters: 8N1 (8 data bits, no parity, 1 stop bit) or 7E1 (7 data bits, even parity, 1 stop bit).

Add yourself to our user files to increase your access.

Communicate with other R-E readers.

Leave your comments on R-E with the SYSOP.

RE-BBS
516-293-2283

For A Free Catalog Call:
1-800-543-4330 To order By Fax: 1-513-434-6959 For Product Ouestions: 1-800-824-TECH (8324)

 Fanconimovr 85

nLL ELECTRONICS CORP.

Mail Order Electronic Parts And Supplies
P.O. Box 567 • Van Nuys, CA 91408

LASER POWER SUPPLY

Epoxy encapsulated power supply for up to 2 mW lasers. $41 / 2^{\circ} \times 11 / 2^{\circ} \times 17 / 16^{\circ}$. Input: $9 \mathrm{Vdc} @ 1$ amp. Output starting voltage: 7 to 8 kV . Operating voltage: 1.1 to 1.5 kV Operating current: 4 to 5 mA Recessed 0.250 quick connect terminals for output. Color coded wire leads for input. CAT LPS- $\$ \$ 35.00$ each

RECHARGEABLE Gell Cell Batteries

Maintenance free, rechargeable batteries. Ideal for portable power or back-up power for communications, video, alarms etc. Useable in any position.

6 VOLTS @ 1.2 AMP/HOURS
Size: $3.81^{-} \mathrm{X}$
$1^{1} \times 2$ high.
CATH GC-612
$\$ 6.50$ each

12 VOLTS @ 10 AMP/HOURS
Two 6 volt 10 AH batteries, assembled as a single 12 volt package. Package size: $6^{+} \times 3.94^{+} \times 3.75^{*}$ CAT: GC-1210 $\$ 35.00$ each

RADIOSONDE WEATHER INFORMATION TRANSMITTER

Viz(r) Radiosonde
A "radiosonde" is a weather instrument, usually released at high atitudes, designed to transmit temperature, humidity, winds and pressure at various heights above the ground. These are new units, discontinued from NOAA national weather service. Contains lots of interesting parts: a solid state transmitter, barometric pressure sensor, humidity sensor and a 24 volt battery which is activated when submersed in water. Great for school science demonstrations or as a source for parts.
 CAT\# WIT- $\$ 4.75$ each . Case of 16 for $\$ 64.00$

4 AAA RECHARGEABLE BATTERY PACK (USED)

Battery pack with 4 AAA nickelcadmium batterios in serios to make a 4.8 volt pack. Batteries can be separated and reconfigured if desired. Terminated by 4 pin ferrale connoctor
 (0.1° conters) on 4° loads. CAT* NCB-43U $\$ 3.00$ per pack

TOLI FREE ORDER LINES 1-800-826-5432

erwhoit Oppens to Vhas Mawnercind or Olwoaver
TERMS: Minimum order $\$ 10.00$. Shipping and handing for the 48 continental U.S.A $\$ 3.50$ per ordor. All others including $A K, H 1, P R$ or Canada must pay full shipping. All orders delivered in CALIFORNIA must include state salibs tax (7.25\%, 7.5\%, 7.75\%, 8.25\% 8.5\%). Quantities Limited. NOC.O.D. Prices subject to change w/out notice. Call or Write For Our FREE 64 Page Catalog
(Outside The U.S.A. Send \$2.00 Postage)
ALL ELECTRONICS CORP.
P.O. Box 567 • Van Nuys, CA - 91408

The World is Talking!

Shortwave

 Listening Guidebook by Harry Helms$\mathrm{H}_{\text {ere's s your guide }}$ to getting the most from a shortwave radio! In clear, nontechnical language, Harry explains how, when, and where to listen in. Its 320 heavily-illustrated pages are packed with advice on:

- antennas

- selecting the right radio
- accessories
- reception techniques

Learn how to hear the BBC, Radio Moscow, ham operators, ships, even spies and "pirate" radio stations! Includes hundreds of station frequencies and the times you can hear them.

Only \$16.95 at radio equipment dealers, or order direct from HighText! Add \$3 shipping (\$4 Canada, \$5 elsewhere). CA add sales tax. U.S. funds only please.

Min Trese

7128 Miramar Road, Suite 15L San Diego, CA 92121

ANTIQUE RADIO CLASSIFIED

Free Sample!

 Antique Radio's Largest Circulation Monthly Articles, Ads \& Classifieds. 6-Month Trial: \$15. 1-Yr: \$27 (\$40-1st Class). A.R.C., P.O. Box 802-L9, Carlisle, MA 01741
WHY RENT?

 \$AVE! \$AVE!CABLETV DESGRAMBLERS JERROLD - OAK • HAMLIN • ZENITH PIONEER - SCIENIIFIC ATLANTA READY-TO -SHIP: 6MONTH WARRANTY! ABSOLUTELY LOWEST WHOLESALE/RETAIL PRICES! MASTERCARD - VISA - AMEX • C.O.D. FREE GOLORGATALOGI 1 (800) 950-9145

Volunteer.
American Heart Association

$1 \cdot 800 \cdot 831 \cdot 4242$ Your Resource for Value. Only a Phone Call Away.

DR73613

REGULATED POWER SUPPLY KITS

Build the power supply you've been needing for years. Ideal for home or instructional use, select from three different versions. Each kit is complete with printed circuit board, electronic components, and user assembly instructions.

ParNo.	Product No.	Input Volage (VAC)	Output Volage (VDC)	$\begin{aligned} & \text { Carrent } \\ & \text { (mit) } \end{aligned}$	Dimensions ($\mathrm{LI}_{\mathrm{W}} \mathrm{W}_{\mathbf{I}} \mathrm{H}$ inches)	Price
DR20360	JE200	120	+5	1000	$3.5 \times 5.0 \times 2.0$	14.95
DR20626	JE215	120	$\begin{aligned} & +5 \text { to }+15 \\ & -5 \text { to }-15 \end{aligned}$	$\begin{aligned} & 750 \text { to } 175 \\ & 750 \text { to } 175 \end{aligned}$	$3.5 \times 5.0 \times 2.0$	19.95
DR73613	JE225	120	+5 fixed	1000	$5.12 \times 5.12 \times 2.25$	29.95
			+3 to +12	100	-	-
			-3 to -12	100	-	-

VOICE SCRAMBLER KIT

Transmit voice messages with complete privacy and security. The Voice Scrambler Kit converts intelligible human speech into unrecognizable garble for recording or transmitting over standard media. The descrambler mode restores the signal to fully intelligible speech. Operate with a cassette tape recorder or build a secure telephone system using a separate kit at each end of the line.
Audio Power Output: 0.5 Watts
Resolution: 8 bits (companded, Mu-Law) Sample Rate: 8 kHz
Power Supply: +5 \& -5 VDC @ 25
$\mathrm{mA},+12 \mathrm{VDC} @ 250$
mA ; (recommend power
supply DR 73613 - left)

$\begin{array}{l}\text { Dimensions: PCB is } 3.55^{\prime \prime} \times 3.10^{\prime \prime} \\ \text { Part No. } \\ \text { Price }\end{array}$
DIW)

TWO-DIGIT
 VOLTMETER KIT

Now you can build a versatile, practical, high-performance digital panel voltmeter. Finished kits deliver $\pm 2 \%$ accuracy at full scale. Its basic input range of 0.0 to 9.9 VDC is easily scaled for any application.

Input Impedance: 82 K with 9.9
VDC range
Displays: $0.3^{\prime \prime}$ red MAN74A type
Power Supply: +5 VDC, regulared, 100 mA ;
(recommend power supply DR20360-left)
Dimensions: $4.3^{\prime \prime} \times 2.2^{\prime \prime} \times 1.3^{\prime \prime}(\mathrm{LxW} \times \mathrm{H})$
Part No. Price
DR70527.
. $\$ 24.95$

EPROMS

Part No,
DR33611
DR39909
DR40002
DR40125
DR40230
DR39829
DR39853
DR39933
DR39968
DR39984
DR39677
DR40037
DR40061
DR39714
DR39722
DR40150
DR39781
DR65699
DR43692

Linear ICs*

Part No. Product No. 1-9
DR33241 TL082CP........................ $\$.59$
DR23579 LM317T........................... 59

DR23683
DR23771
DR23851
DR27422
DR24328
DR24467
DR24539
DR23131
DR23157
DR23181
DR34278

IC Sockeŝs

No.	No.	Description Price
DR51570	8LP	8-pin low profiles. 10
DR37161	14.P	14-pin low profile ... 11
DR37372	16LP	16-pin low profile ... 12
DR39335	24LP	24-pin low profile ... 19
DR40301	28LP	28 -pin low profile 22
DR41110	40LP	40-pin low profile

Connectors

Part Product

$\begin{array}{lll}\text { Part Product } & \\ \text { No. } & \text { No. } & \text { Description Price }\end{array}$
DR15114 DB25P Male, 25 -pin...... $\$.65$
DR15157 DB25S Female, 25-pin..... 75
DR15085 DB25H Hood.................. 39
DR15106 DB25MH Metal Hood....... 1.35

Transistors And Diodes

\qquad
$\begin{array}{lll}\text { Part Product } & \text { Noscription Price } \\ \text { No. }\end{array}$
DR28628 PN2222 TO-92 casc........ S .12
DR28644 PN2907 TO-92 case......... . 12
DR35991 iN4004 DO-41 case 10
DR38236 2N2222A TO-18 case.......... 25
DR36126 1N4735 DO-41 case......... 25
DR38359 2N3904 TO-92 case.......... 12
DR36290 IN751 DO-35 case......... . 15
DR38421 2N4401 TO-92 casc.......... 15
DR36038 1N4148 DO-35 case 07
DR38308 2N3055 TO-3 case 69

Swifches

Part	Product		
No. No.	Description	Price	

*Additional components available

Memory

Part No. Product No. Function Prics DR41398 41256-120 256K DIP 120ns... $\$ 1.69$ DR42251 511000P-80 1MB DIP 80ns 5.99 DR41523 41256A9B-80 256K SIMM 80ns 16.95 DR41718 421000A9A-80 1MB SIPP 80ns 54.95 DR41769 421000A9B-80 IMB SIMM 80ns 54.95

LEDs

Part No, Product No. Description Price DR34761 XC556G T1 3/4, (green) \$.16 DR34796 XC556R T1 3/4, (red) . 12 DR34825 XC556Y T1 3/4, (yellow) . 16

Order toll-free
$1 \cdot 800 \bullet 831 \bullet 4242$

Other Jameco Resources

- Test/Measurement and Prototyping Equipment
- Computer Upgrade and Accessory Products
- Full line of Integrated Circuits and Electronic Components
- Exciting Project Kits for Hobbyists

$\$ 30.00$ Minimum Order For International Sales, Customer Service, Credit Department and all other inquiries: Call $415 \cdot 592 \cdot 8097$ between 7AM-5PM P.S.T.
CA Residents please add applicable sales tax.
Terms: Prices subject to change without notice. Items subject to availability and prior sale. Complete list of terms/warranties is available upon request.

Electronics Now, December 1992

"CABLE BOXES" BELOW WHOLESALE GUABANTEED STOCK - COD'S

(QTY)	(10)	(20)	(40)
NEW TBI. 3	70	55	CALL
TB 2 or 3	45	40	CALL
SA.3B	45	40	CALL
OAK N-12	43	38	CALL
SB 2 OR 3	43	38	CALL

COMBINATION UNITS

DRX-DIC 89 CALL
SYL DIC 59 CALL
PIONEER 295275 CALL

- CONVERTERS WIREMOTES

PANASONIC.			
TZPC145 65	60	CALL	
	STARQUEST.		
E-Z550	65	60	CALL
E-ZY550	75	65	CALL

THEFT OF SERVICE IS A CRIME. INSTALLING ANY DEVICE WITHOUT PERMISSION MAY SUBJECT YOU TO CIVIL OR CRIMINAL PENALTIES, YOU MUST CHECK WITH YOUR LOCAL CABLE COMPANY AND PAY FOR ALL SERVICE YOU USE IT IS NOT THE INTENT OF LAKE SYLVAN TO DEFRAUD ANY TELEVISION OPERATOR AND WE WILL NOT ASSIST ANY COMPANY OR INDIVIDUAL IN DOING THE SAME.

LAKE SYLVAN SALES, INC. SORRY NO MINNESOTA SALES

ADVERTISING INDEX

Electronics Now does not assume any responsibility for errors that may appear in the index below.

Free	formation Number Page	Free	formation Number	Page
-	47th Street Photo. 73	197	Panavise	32
108	AMC Sales 83	56	Parts Express.	107
75	Ace Products 74	78	Radio Shack.	
107	All Electronics 106	-	Star Circuits	74
-	Amazing Concepts 104	184	TECI.	68
98	Beckman Industrial 5	178	Tech Spray	26
190	Beckman Industrial 14, 15	92	Tektronix	24
-	Brookstone Production Co. . . . 86	196	U.S. Cable	81
109	C \& S Sales 42	192	Viejo Publications	76
-	CIE. 31, 41	193	Xandi Electronics	74
183	Cable Warehouse. 82	195	Zentek Corp. .	. 81

Cabletronics103
mtronics74
CLAGGK Video Offer V3
Command Productions 83
Cook's Institute 96
Deco Industries 74
Electronic Goldmine 108
Electronics Book Club 33, 90
Electronic Tech. Today 68
Fluke Manufacturing CV2
Global Specialties 7
Goldstar Precision 95
Grantham College 13
Heathkit 82
HighText Publications, Inc. 106
ISCET 96
Interactive Image Tech 23
Jameco 101
Kelvin 27
Kepco Inc. 26
Lake Sylvan Sales, Inc. 108
M\&G Electronics 104
MCM Electronics 105
MD Electronics 107
Mark V. Electronics 102
Mini Circuits 3
NRI Schools 18
Northeast Electronics 76
17

[^2]
Abstract

Never before has so much professional information on the art of detecting and eliminating electronic snooping devices-and how to defend against experienced information thieves-been placed in one VHS video. If you are a Fortune 500 CEO, an executive in any hi-tech industry, or a novice seeking entry into an honorable, rewarding field of work in countersurveillance, you must view this video presentation again and again.

Wake up! You may be the victim of stolen words-precious ideas that would have made you very wealthy! Yes, professionals, even rank amateurs, may be listening to your most private conversations.

Wake up! If you are not the victim, then you are surrounded by countless victims who need your help if you know how to discover telephone taps, locate bugs, or "sweep" a room clean.

There is a thriving professional service steeped in high-tech techniques that you can become a part of! But first, you must know and understand Countersurveilance Technology. Your very first insight into this highly rewarding field is made possible by a video VHS presentation that you cannot view on broadcast television, satellite, or cable. It presents an informative program prepared by professionals in the field who know their industry, its techniques, kinks and loopholes. Men who can tell you more in 45 minutes in a straightforward, exclusive talk than was ever attempted before.

Foiling Information Thieves

Discover the targets professional snoopers seek out! The prey are stock brokers, arbitrage firms, manufacturers, high-tech companies, any competitive industry, or even small businnesses in the same community. The valuable information they filch may be marketing strategies, customer lists, product formulas, manufacturing techniques, even advertising plans. Information thieves eavesdrop on court decisions, bidding information, financial data. The list is unlimited in the mind of man-especially if he is a thief!

You know that the Russians secretly installed countless microphones in the concrete work of the American Embassy building in Moscow. They converted

HAVE YOUR VISA or MC CARD AVAILABLE

what was to be an embassy and private residence into the most sophisticated recording studio the world had ever known. The building had to be torn down in order to remove all the bugs.

Stolen Information

The open taps from where the information pours out may be from FAX's, computer communications, telephone calls, and everyday business meetings and lunchtime encounters. Businessmen need counselling on how to eliminate this information drain. Basic telephone use coupled with the user's understanding that someone may be listening or recording vital data and information greatly reduces the opportunity for others to purloin meaningful information.

[^3]The professional discussions seen on the TV screen in your home reveals how to detect and disable wiretaps, midget radio-frequency transmitters, and other bugs, plus when to use disinformation to confuse the unwanted listener, and the technique of voice scrambling telephone communications. In fact, do you know how to look for a bug, where to look for a bug, and what to do when you find it?

Bugs of a very small size are easy to build and they can be placed quickly in a matter of seconds, in any object or room. Today you may have used a telephone handset that was bugged. It probably contained three bugs. One was a phony bug to fool you into believing you found a bug and secured the telephone. The second bug placates the investigator when he finds the real thing! And the third bug is found only by the professional, who continued to search just in case there were more bugs.

The professional is not without his tools. Special equipment has been designed so that the professional can sweep a room so that he can detect voice-activated (VOX) and remote-activated bugs. Some of this equipment can be operated by novices, others require a trained countersurveillance professional.

The professionals viewed on your television screen reveal information on the latest technological advances like laserbeam snoopers that are installed hundreds of feet away from the room they snoop on. The professionals disclose that computers yield information too easily.

This advertisement was not written by a countersurveillance professional, but by a beginner whose only experience came from viewing the video tape in the privacy of his home. After you review the video carefully and understand its contents, you have taken the first important step in either acquiring professional help with your surveillance problems, or you may very well consider a carcer as a countersurveillance professional.

The Dollars You Save

To obtain the information contained in the video VHS cassette, you would attend a professional seminar costing $\$ 350-750$ and possibly pay hundreds of dollars more if you had to travel to a distant city to attend. Now, for only $\$ 49.95$ (plus $\$ 4.00$ P\&H) you can view Countersurveillance Tecbniques at home and take refresher views often. To obtain your copy, complete the coupon or call.
cone TesodideringYystem.

Soder-Wick ${ }^{\circledR}$ Fine-Braid is uniquely designed for each desoldering application, from SMIpads to large wire connectors. This ultra-pure, oxygen-free copper is engineered in an open-weave pattern that provides near-perfect capillary action. Solder is wicked cleanly away, without damaging the board or surrounding components.

Choose from nine widthsand three flux arrangements, including static dissipative packaging for ESD-sensitive operations. Call us at 1-800-SOS-WICK and get all the facts on the Soder-Wick System,

SI
 SODER-WICK FINE-BRAID

The State of the Art in Desoidering.

Soder-Wick® Facts \# 12:

The FastestActing Wick.

Soder-Wick ${ }^{\circ}$ Fine-Braid exceeds the desoldering rate specified by Mil Standard 883B, Method 2022. This ultra-pure, oxygen-free copper wire is engineered for superior thermal conductivity, which lowers heat transfer and won't cause damage to the board or surrounding components.

Soder-Wick ${ }^{3}$ Fine-Braid is designed for desoldering operations from SMT pads to large wire connectors. Call us at 1-800-SOS-WICK and get all the facts on the Soder-Wick System.

Soder-Wick® Facts \# 7:
 The Static Dissipative System

Soder-Wick's unique Static Dissipative blue bobbin packaging qualifies under DOD Standard 1686 and DOD Handbook 263, and meets the decay rate provision specified in MIL-B81705B. Solder-Wick Fine-Braid and Ultra-Braid in the SD blue bobbin provide maximum protection for circuit boards and components during ESD-sensitive operations.

Soder-Wick ${ }^{3}$ is engineered for desoldering applications from SMT pads to large wire connectors. Call 1-800-SOS-WICK for all the facts on the Soder-Wick System.

SODER-WICK FINE-BRAID
The State of the Art in Desoldering. CIRCLE 54 ON FREE INFORMATION CARD

[^0]: Science PROBE!
 7RM26
 500-B Bi-County Boulevard
 Farmingdale, NY 11735
 Please forward my copy of Science PROBE! as soon as it comes off the press. 1 am enclosing $\$ 3.95-$ U.S.A. ($\$ 4.82$-Canada-includes G.S.T) plus $\$ 1.00$ for shipping and handling. Better still, please enroll me as a subscriber and send the next four (4) quarterly issues of Science Probe. I am enclosing \$11.95U.S.A. (Canada: \$18.14-includes G.S.T.)
 \square Next Issue Only $\quad \square$ Next Four Issues (1 Year)
 Offers valid in the U.S.A. and Canada only. No foreign orders.
 Name
 Address
 City \longrightarrow State
 \qquad State
 All Orders payable in U.S.A. Funds only.

[^1]: Name

 Address

 City/State

 Zip \qquad Phone
 Offer valid for new members only, subject to acceptance by EEBC. Canada must remit in U.S. funds. Applicants outside the U.S. and Canada will receive special ordering instructions.

 DRE1292C

[^2]: ADVERTISING SALES OFFICE
 Gernsback Publications, Inc.
 $\mathbf{5 0 0}-\mathrm{B} \mathrm{Bi}$-County Blvd.
 Farmingdale, NY 11735
 1-(516) 293-3000
 President: Larry Steckler
 For Advertising ONLY
 516-293.3000
 Fax 1.516-293-3115
 Larry Steckler publisher
 Christina Estrada
 assistant to the President
 Arline Fishman
 advertising director
 Denise Mullen
 advertising assistant
 Kelly McQuade
 credit manager
 Subscriber Customer Service
 1-800-288-0652
 Order Entry for New Subscribers
 1.800-999-7139

 7:00 AM - 6:00 PM M-F MST
 ADVERTISING SALES OFFICES
 EAST/SOUTHEAST
 Stanley Levitan, Eastern Advertising Sales
 Manager
 Electronics Now
 1 Overlook Ave.
 Great Neck. NY 11021
 1-516-487-9357, 1-516-293-3000
 Fax 1-516-487.8402
 MIDWEST/Texas/Arkansas/Okla.
 Ralph Bergen, Midwest Advertising Sales
 Manager
 Electronics Now
 One Northfield Plaza, Suite 300
 Northfield, IL 60093-1214
 1.708-446-1444

 Fax 1-708-559-0562
 PACIFIC COAST/Mountain States
 Electronics Now Magazine
 Pamela Kuster
 Pattis/3M
 1800 North Highland Avenue
 Suite 717
 Hollywood, CA 90028
 EN Shopper
 Joe Shere, National Representative
 P.O. Box 169

 Idyllwild, CA 92549
 1.714-659-9743

 Fax 1.714.659-2469

[^3]: CLAGGK INC.
 EN
 P.O. Box 4099 • Farmingdale, NY 11735

 Please neh my copy of the Countersurvilance Techniques Video SHS Casette for a total cost of 553.95 cach (which inctudes 5400 postage and handling)
 No of Cawettes orkered
 Amount of payment 5
 salestax (X.Y S only)
 Totat encloned

 Bill my Vist \square Masercant
 Cand Na
 Expire Date
 Squuture
 Name
 Aditres
 Gity \qquad State - AP \square All payments in U'S.A. funds Ganadians add Si, 00 per VHS cavette No forcign orders.

